{"title":"治疗缺血性中风的纳米增强自然医学:机遇与挑战","authors":"Jihao Yang , Lingyi Guo , Jun Liao , Huaqiang Yi","doi":"10.1016/j.bmt.2024.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>Ischemic stroke (IS), a major cause of death and disability globally, requires innovative therapeutic approaches due to its complex pathology. Nature medicine (NM) offers promising treatments through its bioactive compounds, which target the multifaceted nature of stroke-induced damage. However, the clinical application of NM is limited by challenges in bioavailability and specificity. This review article presents an advanced perspective on integrating nanotechnology with NM to create potent nanodelivery systems for ischemic stroke treatment. We highlight the pathological underpinnings of ischemic stroke, including oxidative stress, inflammation, and apoptosis, and discuss how NM compounds offer targeted mitigation strategies. By incorporating nanodelivery platforms, such as liposomes and nanoparticles, these NM -based treatments can achieve enhanced targeting, solubility, and controlled release, significantly improving therapeutic outcomes while reducing side effects. Despite promising developments, the translation of nano-enhanced NM into clinical practice faces obstacles, including manufacturing scalability, regulatory approval, and safety evaluations. This review emphasizes the potential of combining nanotechnology with NM to advance ischemic stroke therapy, calling for integrated research efforts to overcome existing barriers and fully realize the clinical benefits of this innovative approach.</p></div>","PeriodicalId":100180,"journal":{"name":"Biomedical Technology","volume":"7 ","pages":"Pages 32-45"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949723X24000151/pdfft?md5=7ca6bcfb5188479a44a70cc5ccf9f911&pid=1-s2.0-S2949723X24000151-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nano-enhanced nature medicine for ischemic stroke: Opportunities and challenges\",\"authors\":\"Jihao Yang , Lingyi Guo , Jun Liao , Huaqiang Yi\",\"doi\":\"10.1016/j.bmt.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ischemic stroke (IS), a major cause of death and disability globally, requires innovative therapeutic approaches due to its complex pathology. Nature medicine (NM) offers promising treatments through its bioactive compounds, which target the multifaceted nature of stroke-induced damage. However, the clinical application of NM is limited by challenges in bioavailability and specificity. This review article presents an advanced perspective on integrating nanotechnology with NM to create potent nanodelivery systems for ischemic stroke treatment. We highlight the pathological underpinnings of ischemic stroke, including oxidative stress, inflammation, and apoptosis, and discuss how NM compounds offer targeted mitigation strategies. By incorporating nanodelivery platforms, such as liposomes and nanoparticles, these NM -based treatments can achieve enhanced targeting, solubility, and controlled release, significantly improving therapeutic outcomes while reducing side effects. Despite promising developments, the translation of nano-enhanced NM into clinical practice faces obstacles, including manufacturing scalability, regulatory approval, and safety evaluations. This review emphasizes the potential of combining nanotechnology with NM to advance ischemic stroke therapy, calling for integrated research efforts to overcome existing barriers and fully realize the clinical benefits of this innovative approach.</p></div>\",\"PeriodicalId\":100180,\"journal\":{\"name\":\"Biomedical Technology\",\"volume\":\"7 \",\"pages\":\"Pages 32-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949723X24000151/pdfft?md5=7ca6bcfb5188479a44a70cc5ccf9f911&pid=1-s2.0-S2949723X24000151-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949723X24000151\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949723X24000151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nano-enhanced nature medicine for ischemic stroke: Opportunities and challenges
Ischemic stroke (IS), a major cause of death and disability globally, requires innovative therapeutic approaches due to its complex pathology. Nature medicine (NM) offers promising treatments through its bioactive compounds, which target the multifaceted nature of stroke-induced damage. However, the clinical application of NM is limited by challenges in bioavailability and specificity. This review article presents an advanced perspective on integrating nanotechnology with NM to create potent nanodelivery systems for ischemic stroke treatment. We highlight the pathological underpinnings of ischemic stroke, including oxidative stress, inflammation, and apoptosis, and discuss how NM compounds offer targeted mitigation strategies. By incorporating nanodelivery platforms, such as liposomes and nanoparticles, these NM -based treatments can achieve enhanced targeting, solubility, and controlled release, significantly improving therapeutic outcomes while reducing side effects. Despite promising developments, the translation of nano-enhanced NM into clinical practice faces obstacles, including manufacturing scalability, regulatory approval, and safety evaluations. This review emphasizes the potential of combining nanotechnology with NM to advance ischemic stroke therapy, calling for integrated research efforts to overcome existing barriers and fully realize the clinical benefits of this innovative approach.