Amanda Palazzo , Taher Kahil , Barbara A. Willaarts , Peter Burek , Michiel van Dijk , Ting Tang , Piotr Magnuszewski , Petr Havlík , Simon Langan , Yoshihide Wada
{"title":"评估跨界河流流域水、粮食和能源安全的可持续发展途径","authors":"Amanda Palazzo , Taher Kahil , Barbara A. Willaarts , Peter Burek , Michiel van Dijk , Ting Tang , Piotr Magnuszewski , Petr Havlík , Simon Langan , Yoshihide Wada","doi":"10.1016/j.envdev.2024.101030","DOIUrl":null,"url":null,"abstract":"<div><p>Worldwide hundreds of millions of people suffer from water, food and energy insecurity in transboundary river basins, such as the Zambezi River Basin. The interconnected nature of nexus is often not recognized in investment planning and many regional policymakers lack adequate tools to tackle it. Future growing demands and climate change add an additional challenge. In this study, we combine policy relevant co-developed stakeholder scenarios and integrated nexus modeling tools to identify key solutions to achieve sustainable development in the Zambezi. Results show that siloed development without coordination achieves the least economic and social benefits in the long term. Prioritizing economic benefits by maximizing the use of available natural resources results in the expansion of irrigated areas by more than a million hectares and increase in hydropower production by 22,000 GWh/year in the coming decades, bringing significant economic benefits, up to $12.7 billion per year, but causes local water scarcity and negative impacts on the environment. Combining environmental protection policies with sustainable investments of $7.2 billion per year (e.g. groundwater pumping and wastewater treatment and reuse, irrigation efficiency improvements, and farmer support aimed to improve food security and productivity) results in significantly higher social benefits with economic benefits that still reach $11.7 billion per year.</p></div>","PeriodicalId":54269,"journal":{"name":"Environmental Development","volume":"51 ","pages":"Article 101030"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221146452400068X/pdfft?md5=046ffe9c040922586dac23dca3dd840b&pid=1-s2.0-S221146452400068X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing sustainable development pathways for water, food, and energy security in a transboundary river basin\",\"authors\":\"Amanda Palazzo , Taher Kahil , Barbara A. Willaarts , Peter Burek , Michiel van Dijk , Ting Tang , Piotr Magnuszewski , Petr Havlík , Simon Langan , Yoshihide Wada\",\"doi\":\"10.1016/j.envdev.2024.101030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Worldwide hundreds of millions of people suffer from water, food and energy insecurity in transboundary river basins, such as the Zambezi River Basin. The interconnected nature of nexus is often not recognized in investment planning and many regional policymakers lack adequate tools to tackle it. Future growing demands and climate change add an additional challenge. In this study, we combine policy relevant co-developed stakeholder scenarios and integrated nexus modeling tools to identify key solutions to achieve sustainable development in the Zambezi. Results show that siloed development without coordination achieves the least economic and social benefits in the long term. Prioritizing economic benefits by maximizing the use of available natural resources results in the expansion of irrigated areas by more than a million hectares and increase in hydropower production by 22,000 GWh/year in the coming decades, bringing significant economic benefits, up to $12.7 billion per year, but causes local water scarcity and negative impacts on the environment. Combining environmental protection policies with sustainable investments of $7.2 billion per year (e.g. groundwater pumping and wastewater treatment and reuse, irrigation efficiency improvements, and farmer support aimed to improve food security and productivity) results in significantly higher social benefits with economic benefits that still reach $11.7 billion per year.</p></div>\",\"PeriodicalId\":54269,\"journal\":{\"name\":\"Environmental Development\",\"volume\":\"51 \",\"pages\":\"Article 101030\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S221146452400068X/pdfft?md5=046ffe9c040922586dac23dca3dd840b&pid=1-s2.0-S221146452400068X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Development\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221146452400068X\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Development","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221146452400068X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessing sustainable development pathways for water, food, and energy security in a transboundary river basin
Worldwide hundreds of millions of people suffer from water, food and energy insecurity in transboundary river basins, such as the Zambezi River Basin. The interconnected nature of nexus is often not recognized in investment planning and many regional policymakers lack adequate tools to tackle it. Future growing demands and climate change add an additional challenge. In this study, we combine policy relevant co-developed stakeholder scenarios and integrated nexus modeling tools to identify key solutions to achieve sustainable development in the Zambezi. Results show that siloed development without coordination achieves the least economic and social benefits in the long term. Prioritizing economic benefits by maximizing the use of available natural resources results in the expansion of irrigated areas by more than a million hectares and increase in hydropower production by 22,000 GWh/year in the coming decades, bringing significant economic benefits, up to $12.7 billion per year, but causes local water scarcity and negative impacts on the environment. Combining environmental protection policies with sustainable investments of $7.2 billion per year (e.g. groundwater pumping and wastewater treatment and reuse, irrigation efficiency improvements, and farmer support aimed to improve food security and productivity) results in significantly higher social benefits with economic benefits that still reach $11.7 billion per year.
期刊介绍:
Environmental Development provides a future oriented, pro-active, authoritative source of information and learning for researchers, postgraduate students, policymakers, and managers, and bridges the gap between fundamental research and the application in management and policy practices. It stimulates the exchange and coupling of traditional scientific knowledge on the environment, with the experiential knowledge among decision makers and other stakeholders and also connects natural sciences and social and behavioral sciences. Environmental Development includes and promotes scientific work from the non-western world, and also strengthens the collaboration between the developed and developing world. Further it links environmental research to broader issues of economic and social-cultural developments, and is intended to shorten the delays between research and publication, while ensuring thorough peer review. Environmental Development also creates a forum for transnational communication, discussion and global action.
Environmental Development is open to a broad range of disciplines and authors. The journal welcomes, in particular, contributions from a younger generation of researchers, and papers expanding the frontiers of environmental sciences, pointing at new directions and innovative answers.
All submissions to Environmental Development are reviewed using the general criteria of quality, originality, precision, importance of topic and insights, clarity of exposition, which are in keeping with the journal''s aims and scope.