{"title":"利用四稳压电悬臂梁收集振动能量:建模、制造和测试","authors":"Amin Nadertehrani, Saeed Ziaei-Rad, Reza Eshtehardiha","doi":"10.1016/j.euromechsol.2024.105389","DOIUrl":null,"url":null,"abstract":"<div><p>The combination of beams with piezoelectric patches has become a prevalent energy harvesting tool due to its ease of use. Typical energy harvesting systems are usually linear, and their efficiency is not satisfying due to low-frequency bandwidth. In this paper, a quad-stable piezoelectric vibration energy harvester is analyzed both numerically and experimentally. The primary purpose of this investigation is to analyze the static and dynamic characteristics of a proposed quad-stable system to consider its potential for application in broadband energy harvesting comprehensively. The harvester system consists of a slotted cantilever beam, a piezoelectric patch, a pair of tip-mass blocks, and a double-sided clip. The cantilever beam is subjected to pre-displacement constraints made by a mutual self-constraint at the free end of it. The nonlinear behaviors of the harvester system, including snap-through and softening phenomena, are analyzed using the assumed modes and finite element method (FEM). The harvester's vibration equation is solved numerically and through an FE model which is made by an in-house finite element software. A prototype is designed and fabricated to validate the mathematical model and FE simulation. The experimental force-displacement diagram of the harvester displays distinct discontinuities, reflecting abrupt transitions occurring while switching its stable states. The prototype dynamics are analyzed by harmonic base excitation with different amplitude levels in two conditions, including the presence and absence of the piezoelectric patch. The results obtained from the mathematical and FEM model demonstrate a satisfactory correlation with the experimental data. Furthermore, the experimental data reveal the occurrence of the snap-through phenomenon, accompanied by a significant widening of the frequency bandwidth at relatively high amplitude levels. The system has the ability to provide an average output electrical power of 0.288 mW for an electrical resistance of 3.262 kΩ at the excitation frequency of 12.695 Hz and base acceleration amplitude of 3g.</p></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"107 ","pages":"Article 105389"},"PeriodicalIF":4.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harvesting vibration energy by quad-stable piezoelectric cantilever beam: Modeling, fabrication and testing\",\"authors\":\"Amin Nadertehrani, Saeed Ziaei-Rad, Reza Eshtehardiha\",\"doi\":\"10.1016/j.euromechsol.2024.105389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The combination of beams with piezoelectric patches has become a prevalent energy harvesting tool due to its ease of use. Typical energy harvesting systems are usually linear, and their efficiency is not satisfying due to low-frequency bandwidth. In this paper, a quad-stable piezoelectric vibration energy harvester is analyzed both numerically and experimentally. The primary purpose of this investigation is to analyze the static and dynamic characteristics of a proposed quad-stable system to consider its potential for application in broadband energy harvesting comprehensively. The harvester system consists of a slotted cantilever beam, a piezoelectric patch, a pair of tip-mass blocks, and a double-sided clip. The cantilever beam is subjected to pre-displacement constraints made by a mutual self-constraint at the free end of it. The nonlinear behaviors of the harvester system, including snap-through and softening phenomena, are analyzed using the assumed modes and finite element method (FEM). The harvester's vibration equation is solved numerically and through an FE model which is made by an in-house finite element software. A prototype is designed and fabricated to validate the mathematical model and FE simulation. The experimental force-displacement diagram of the harvester displays distinct discontinuities, reflecting abrupt transitions occurring while switching its stable states. The prototype dynamics are analyzed by harmonic base excitation with different amplitude levels in two conditions, including the presence and absence of the piezoelectric patch. The results obtained from the mathematical and FEM model demonstrate a satisfactory correlation with the experimental data. Furthermore, the experimental data reveal the occurrence of the snap-through phenomenon, accompanied by a significant widening of the frequency bandwidth at relatively high amplitude levels. The system has the ability to provide an average output electrical power of 0.288 mW for an electrical resistance of 3.262 kΩ at the excitation frequency of 12.695 Hz and base acceleration amplitude of 3g.</p></div>\",\"PeriodicalId\":50483,\"journal\":{\"name\":\"European Journal of Mechanics A-Solids\",\"volume\":\"107 \",\"pages\":\"Article 105389\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Mechanics A-Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0997753824001694\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753824001694","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
Harvesting vibration energy by quad-stable piezoelectric cantilever beam: Modeling, fabrication and testing
The combination of beams with piezoelectric patches has become a prevalent energy harvesting tool due to its ease of use. Typical energy harvesting systems are usually linear, and their efficiency is not satisfying due to low-frequency bandwidth. In this paper, a quad-stable piezoelectric vibration energy harvester is analyzed both numerically and experimentally. The primary purpose of this investigation is to analyze the static and dynamic characteristics of a proposed quad-stable system to consider its potential for application in broadband energy harvesting comprehensively. The harvester system consists of a slotted cantilever beam, a piezoelectric patch, a pair of tip-mass blocks, and a double-sided clip. The cantilever beam is subjected to pre-displacement constraints made by a mutual self-constraint at the free end of it. The nonlinear behaviors of the harvester system, including snap-through and softening phenomena, are analyzed using the assumed modes and finite element method (FEM). The harvester's vibration equation is solved numerically and through an FE model which is made by an in-house finite element software. A prototype is designed and fabricated to validate the mathematical model and FE simulation. The experimental force-displacement diagram of the harvester displays distinct discontinuities, reflecting abrupt transitions occurring while switching its stable states. The prototype dynamics are analyzed by harmonic base excitation with different amplitude levels in two conditions, including the presence and absence of the piezoelectric patch. The results obtained from the mathematical and FEM model demonstrate a satisfactory correlation with the experimental data. Furthermore, the experimental data reveal the occurrence of the snap-through phenomenon, accompanied by a significant widening of the frequency bandwidth at relatively high amplitude levels. The system has the ability to provide an average output electrical power of 0.288 mW for an electrical resistance of 3.262 kΩ at the excitation frequency of 12.695 Hz and base acceleration amplitude of 3g.
期刊介绍:
The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.