带阻尼和小参数的等温欧拉方程的全局大平稳解

IF 1.7 2区 数学 Q1 MATHEMATICS
Yue-Jun Peng
{"title":"带阻尼和小参数的等温欧拉方程的全局大平稳解","authors":"Yue-Jun Peng","doi":"10.1016/j.jfa.2024.110571","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concerns smooth solutions to Cauchy problem for isothermal Euler equations with damping depending on a relaxation time. We prove that the problem admits a unique solution when either the relaxation time or the initial datum is sufficiently small. In particular, this yields the global existence of a large smooth solution when the relaxation time is sufficiently small. We justify that, in an appropriate time scaling, the density of Euler equations with damping converges to the large solution of the heat equation as the relaxation time tends to zero. Moreover, we establish error estimates of such a convergence for the large solutions. A key step in proving these results is a uniform estimate of a quantity related to Darcy's law.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global large smooth solutions for isothermal Euler equations with damping and small parameter\",\"authors\":\"Yue-Jun Peng\",\"doi\":\"10.1016/j.jfa.2024.110571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper concerns smooth solutions to Cauchy problem for isothermal Euler equations with damping depending on a relaxation time. We prove that the problem admits a unique solution when either the relaxation time or the initial datum is sufficiently small. In particular, this yields the global existence of a large smooth solution when the relaxation time is sufficiently small. We justify that, in an appropriate time scaling, the density of Euler equations with damping converges to the large solution of the heat equation as the relaxation time tends to zero. Moreover, we establish error estimates of such a convergence for the large solutions. A key step in proving these results is a uniform estimate of a quantity related to Darcy's law.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002593\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002593","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及阻尼取决于松弛时间的等温欧拉方程 Cauchy 问题的平稳解。我们证明,当松弛时间或初始基准足够小时,问题有唯一解。特别是,当松弛时间足够小时,会产生一个大的光滑解的全局存在性。我们证明,在适当的时间范围内,当松弛时间趋于零时,带阻尼的欧拉方程密度会收敛于热方程的大解。此外,我们还建立了这种大解收敛的误差估计。证明这些结果的关键步骤是对与达西定律相关的一个量进行统一估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global large smooth solutions for isothermal Euler equations with damping and small parameter

This paper concerns smooth solutions to Cauchy problem for isothermal Euler equations with damping depending on a relaxation time. We prove that the problem admits a unique solution when either the relaxation time or the initial datum is sufficiently small. In particular, this yields the global existence of a large smooth solution when the relaxation time is sufficiently small. We justify that, in an appropriate time scaling, the density of Euler equations with damping converges to the large solution of the heat equation as the relaxation time tends to zero. Moreover, we establish error estimates of such a convergence for the large solutions. A key step in proving these results is a uniform estimate of a quantity related to Darcy's law.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信