{"title":"带阻尼和小参数的等温欧拉方程的全局大平稳解","authors":"Yue-Jun Peng","doi":"10.1016/j.jfa.2024.110571","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concerns smooth solutions to Cauchy problem for isothermal Euler equations with damping depending on a relaxation time. We prove that the problem admits a unique solution when either the relaxation time or the initial datum is sufficiently small. In particular, this yields the global existence of a large smooth solution when the relaxation time is sufficiently small. We justify that, in an appropriate time scaling, the density of Euler equations with damping converges to the large solution of the heat equation as the relaxation time tends to zero. Moreover, we establish error estimates of such a convergence for the large solutions. A key step in proving these results is a uniform estimate of a quantity related to Darcy's law.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global large smooth solutions for isothermal Euler equations with damping and small parameter\",\"authors\":\"Yue-Jun Peng\",\"doi\":\"10.1016/j.jfa.2024.110571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper concerns smooth solutions to Cauchy problem for isothermal Euler equations with damping depending on a relaxation time. We prove that the problem admits a unique solution when either the relaxation time or the initial datum is sufficiently small. In particular, this yields the global existence of a large smooth solution when the relaxation time is sufficiently small. We justify that, in an appropriate time scaling, the density of Euler equations with damping converges to the large solution of the heat equation as the relaxation time tends to zero. Moreover, we establish error estimates of such a convergence for the large solutions. A key step in proving these results is a uniform estimate of a quantity related to Darcy's law.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123624002593\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624002593","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Global large smooth solutions for isothermal Euler equations with damping and small parameter
This paper concerns smooth solutions to Cauchy problem for isothermal Euler equations with damping depending on a relaxation time. We prove that the problem admits a unique solution when either the relaxation time or the initial datum is sufficiently small. In particular, this yields the global existence of a large smooth solution when the relaxation time is sufficiently small. We justify that, in an appropriate time scaling, the density of Euler equations with damping converges to the large solution of the heat equation as the relaxation time tends to zero. Moreover, we establish error estimates of such a convergence for the large solutions. A key step in proving these results is a uniform estimate of a quantity related to Darcy's law.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis