用深度学习方法求解 PDE 的自适应轨迹采样

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Xingyu Chen , Jianhuan Cen , Qingsong Zou
{"title":"用深度学习方法求解 PDE 的自适应轨迹采样","authors":"Xingyu Chen ,&nbsp;Jianhuan Cen ,&nbsp;Qingsong Zou","doi":"10.1016/j.amc.2024.128928","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a novel adaptive technique, named <em>adaptive trajectories sampling</em> (ATS), to select training points for learning the solution of partial differential equations (PDEs). By the ATS, the training points are selected adaptively according to an empirical-value-type instead of residual-type error indicator from trajectories which are generated by a PDE-related stochastic process. We incorporate the ATS into three known deep learning solvers for PDEs, namely, the adaptive physics-informed neural network method (ATS-PINN), the adaptive derivative-free-loss method (ATS-DFLM), and the adaptive temporal-difference method for forward-backward stochastic differential equations (ATS-FBSTD). Our numerical experiments show that the ATS remarkably improves the computational accuracy and efficiency of the original deep solvers. In particular, for a high-dimensional peak problem, the relative errors by the ATS-PINN can achieve the order of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>, even when the vanilla PINN fails.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive trajectories sampling for solving PDEs with deep learning methods\",\"authors\":\"Xingyu Chen ,&nbsp;Jianhuan Cen ,&nbsp;Qingsong Zou\",\"doi\":\"10.1016/j.amc.2024.128928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose a novel adaptive technique, named <em>adaptive trajectories sampling</em> (ATS), to select training points for learning the solution of partial differential equations (PDEs). By the ATS, the training points are selected adaptively according to an empirical-value-type instead of residual-type error indicator from trajectories which are generated by a PDE-related stochastic process. We incorporate the ATS into three known deep learning solvers for PDEs, namely, the adaptive physics-informed neural network method (ATS-PINN), the adaptive derivative-free-loss method (ATS-DFLM), and the adaptive temporal-difference method for forward-backward stochastic differential equations (ATS-FBSTD). Our numerical experiments show that the ATS remarkably improves the computational accuracy and efficiency of the original deep solvers. In particular, for a high-dimensional peak problem, the relative errors by the ATS-PINN can achieve the order of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup><mo>)</mo></math></span>, even when the vanilla PINN fails.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300324003898\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300324003898","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种名为自适应轨迹采样(ATS)的新型自适应技术,用于选择学习偏微分方程(PDE)解的训练点。通过自适应轨迹采样技术,训练点是根据由偏微分方程相关随机过程生成的轨迹中的经验值型误差指标(而不是残差型误差指标)进行自适应选择的。我们将 ATS 纳入了三种已知的 PDE 深度学习求解器,即自适应物理信息神经网络方法(ATS-PINN)、自适应无损导数方法(ATS-DFLM)和前向-后向随机微分方程自适应时差方法(ATS-FBSTD)。我们的数值实验表明,ATS 显著提高了原始深度求解器的计算精度和效率。特别是,对于高维峰值问题,ATS-PINN 的相对误差可以达到 O(10-3) 的数量级,甚至在 vanilla PINN 失效时也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive trajectories sampling for solving PDEs with deep learning methods

In this paper, we propose a novel adaptive technique, named adaptive trajectories sampling (ATS), to select training points for learning the solution of partial differential equations (PDEs). By the ATS, the training points are selected adaptively according to an empirical-value-type instead of residual-type error indicator from trajectories which are generated by a PDE-related stochastic process. We incorporate the ATS into three known deep learning solvers for PDEs, namely, the adaptive physics-informed neural network method (ATS-PINN), the adaptive derivative-free-loss method (ATS-DFLM), and the adaptive temporal-difference method for forward-backward stochastic differential equations (ATS-FBSTD). Our numerical experiments show that the ATS remarkably improves the computational accuracy and efficiency of the original deep solvers. In particular, for a high-dimensional peak problem, the relative errors by the ATS-PINN can achieve the order of O(103), even when the vanilla PINN fails.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信