基于 XGBoost 的永磁球形电机电磁扭矩建模与验证

IF 3.5 2区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
{"title":"基于 XGBoost 的永磁球形电机电磁扭矩建模与验证","authors":"","doi":"10.1016/j.simpat.2024.102989","DOIUrl":null,"url":null,"abstract":"<div><p>As a device characterized by multiple degrees of freedom in one driving unit, analytical electromagnetic torque modeling is needed for the rotor position tracking control of a Permanent Magnet Spherical Motor (PMSpM). In this paper, Extreme Gradient Boosting (XGBoost) was proposed to be employed for establishing the output relationship between the rotor position and the electromagnetic torque of PMSpM. The Finite Element Method (FEM) was applied to obtain train data and test data concerning the rotor position and electromagnetic torque of PMSpM. Particle Swarm Optimization (PSO) was applied to optimize partial parameters of XGBoost, which serves to enhance the modeling accuracy of electromagnetic torque via XGBoost. The predictive results of algorithms, including Random Forest (RF), Gradient Boosting Regression Tree (GBRT), Multi-task Gaussian Process (MTGP), and XGBoost, were compared with FEM results and experimental results over multiple indicators. The capability of XGBoost has been validated not only to perform modeling tasks within an abbreviated time span but also to generate models that display amplified accuracy and efficiency.</p></div>","PeriodicalId":49518,"journal":{"name":"Simulation Modelling Practice and Theory","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic torque modeling and validation for a permanent magnet spherical motor based on XGBoost\",\"authors\":\"\",\"doi\":\"10.1016/j.simpat.2024.102989\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a device characterized by multiple degrees of freedom in one driving unit, analytical electromagnetic torque modeling is needed for the rotor position tracking control of a Permanent Magnet Spherical Motor (PMSpM). In this paper, Extreme Gradient Boosting (XGBoost) was proposed to be employed for establishing the output relationship between the rotor position and the electromagnetic torque of PMSpM. The Finite Element Method (FEM) was applied to obtain train data and test data concerning the rotor position and electromagnetic torque of PMSpM. Particle Swarm Optimization (PSO) was applied to optimize partial parameters of XGBoost, which serves to enhance the modeling accuracy of electromagnetic torque via XGBoost. The predictive results of algorithms, including Random Forest (RF), Gradient Boosting Regression Tree (GBRT), Multi-task Gaussian Process (MTGP), and XGBoost, were compared with FEM results and experimental results over multiple indicators. The capability of XGBoost has been validated not only to perform modeling tasks within an abbreviated time span but also to generate models that display amplified accuracy and efficiency.</p></div>\",\"PeriodicalId\":49518,\"journal\":{\"name\":\"Simulation Modelling Practice and Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Simulation Modelling Practice and Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569190X24001035\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Simulation Modelling Practice and Theory","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569190X24001035","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

永磁球形电机(PMSpM)是一种在一个驱动单元中具有多个自由度的设备,因此需要对其转子位置跟踪控制进行电磁转矩分析建模。本文提出采用极端梯度提升法(XGBoost)来建立 PMSpM 转子位置与电磁转矩之间的输出关系。应用有限元法(FEM)获得了有关 PMSpM 转子位置和电磁扭矩的训练数据和测试数据。应用粒子群优化(PSO)来优化 XGBoost 的部分参数,从而通过 XGBoost 提高电磁转矩的建模精度。将随机森林(RF)、梯度提升回归树(GBRT)、多任务高斯过程(MTGP)和 XGBoost 等算法的预测结果与有限元结果和多个指标的实验结果进行了比较。XGBoost 的能力得到了验证,它不仅能在较短的时间内完成建模任务,还能生成显示出更高精度和效率的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electromagnetic torque modeling and validation for a permanent magnet spherical motor based on XGBoost

As a device characterized by multiple degrees of freedom in one driving unit, analytical electromagnetic torque modeling is needed for the rotor position tracking control of a Permanent Magnet Spherical Motor (PMSpM). In this paper, Extreme Gradient Boosting (XGBoost) was proposed to be employed for establishing the output relationship between the rotor position and the electromagnetic torque of PMSpM. The Finite Element Method (FEM) was applied to obtain train data and test data concerning the rotor position and electromagnetic torque of PMSpM. Particle Swarm Optimization (PSO) was applied to optimize partial parameters of XGBoost, which serves to enhance the modeling accuracy of electromagnetic torque via XGBoost. The predictive results of algorithms, including Random Forest (RF), Gradient Boosting Regression Tree (GBRT), Multi-task Gaussian Process (MTGP), and XGBoost, were compared with FEM results and experimental results over multiple indicators. The capability of XGBoost has been validated not only to perform modeling tasks within an abbreviated time span but also to generate models that display amplified accuracy and efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Simulation Modelling Practice and Theory
Simulation Modelling Practice and Theory 工程技术-计算机:跨学科应用
CiteScore
9.80
自引率
4.80%
发文量
142
审稿时长
21 days
期刊介绍: The journal Simulation Modelling Practice and Theory provides a forum for original, high-quality papers dealing with any aspect of systems simulation and modelling. The journal aims at being a reference and a powerful tool to all those professionally active and/or interested in the methods and applications of simulation. Submitted papers will be peer reviewed and must significantly contribute to modelling and simulation in general or use modelling and simulation in application areas. Paper submission is solicited on: • theoretical aspects of modelling and simulation including formal modelling, model-checking, random number generators, sensitivity analysis, variance reduction techniques, experimental design, meta-modelling, methods and algorithms for validation and verification, selection and comparison procedures etc.; • methodology and application of modelling and simulation in any area, including computer systems, networks, real-time and embedded systems, mobile and intelligent agents, manufacturing and transportation systems, management, engineering, biomedical engineering, economics, ecology and environment, education, transaction handling, etc.; • simulation languages and environments including those, specific to distributed computing, grid computing, high performance computers or computer networks, etc.; • distributed and real-time simulation, simulation interoperability; • tools for high performance computing simulation, including dedicated architectures and parallel computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信