多面性学习揭示了青少年大脑与环境之间的非线性相互作用,这种相互作用可预测青少年的情绪和行为问题。

Erica L Busch, May I Conley, Arielle Baskin-Sommers
{"title":"多面性学习揭示了青少年大脑与环境之间的非线性相互作用,这种相互作用可预测青少年的情绪和行为问题。","authors":"Erica L Busch, May I Conley, Arielle Baskin-Sommers","doi":"10.1016/j.bpsc.2024.07.001","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To progress adolescent mental health research beyond our present achievements - a complex account of brain and environmental risk factors without understanding neurobiological embedding in the environment - we need methods to unveil relationships between the developing brain and real-world environmental experiences.</p><p><strong>Methods: </strong>We investigated associations among brain function, environments, and emotional and behavioral problems using participants from the Adolescent Brain and Cognitive Development Study (N=2,401 female). We applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data like functional magnetic resonance imaging (fMRI). Specifically, we developed exogenous PHATE (E-PHATE) to model brain-environment interactions. We used E-PHATE embeddings of participants' brain activation during emotional and cognitive processing to predict individual differences in cognition and emotional and behavioral problems, both cross-sectionally and longitudinally.</p><p><strong>Results: </strong>E-PHATE embeddings of participants' brain activation and environments at baseline show moderate-to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical regions and large-scale cortical networks, relative to the zero-to-small effects achieved by voxel or PHATE methods. E-PHATE embeddings of the brain and environment at baseline also relate to emotional and behavioral problems two years later. These longitudinal predictions show a consistent, moderate effect in the frontoparietal and attention networks.</p><p><strong>Conclusions: </strong>Adolescent brain's embedding in the environment yields enriched insight into emotional and behavioral problems. Using E-PHATE, we demonstrate how the harmonization of cutting-edge computational methods with longstanding developmental theories advances detection and prediction of adolescent emotional and behavioral problems.</p>","PeriodicalId":93900,"journal":{"name":"Biological psychiatry. Cognitive neuroscience and neuroimaging","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Manifold learning uncovers nonlinear interactions between the adolescent brain and environment that predict emotional and behavioral problems.\",\"authors\":\"Erica L Busch, May I Conley, Arielle Baskin-Sommers\",\"doi\":\"10.1016/j.bpsc.2024.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>To progress adolescent mental health research beyond our present achievements - a complex account of brain and environmental risk factors without understanding neurobiological embedding in the environment - we need methods to unveil relationships between the developing brain and real-world environmental experiences.</p><p><strong>Methods: </strong>We investigated associations among brain function, environments, and emotional and behavioral problems using participants from the Adolescent Brain and Cognitive Development Study (N=2,401 female). We applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data like functional magnetic resonance imaging (fMRI). Specifically, we developed exogenous PHATE (E-PHATE) to model brain-environment interactions. We used E-PHATE embeddings of participants' brain activation during emotional and cognitive processing to predict individual differences in cognition and emotional and behavioral problems, both cross-sectionally and longitudinally.</p><p><strong>Results: </strong>E-PHATE embeddings of participants' brain activation and environments at baseline show moderate-to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical regions and large-scale cortical networks, relative to the zero-to-small effects achieved by voxel or PHATE methods. E-PHATE embeddings of the brain and environment at baseline also relate to emotional and behavioral problems two years later. These longitudinal predictions show a consistent, moderate effect in the frontoparietal and attention networks.</p><p><strong>Conclusions: </strong>Adolescent brain's embedding in the environment yields enriched insight into emotional and behavioral problems. Using E-PHATE, we demonstrate how the harmonization of cutting-edge computational methods with longstanding developmental theories advances detection and prediction of adolescent emotional and behavioral problems.</p>\",\"PeriodicalId\":93900,\"journal\":{\"name\":\"Biological psychiatry. Cognitive neuroscience and neuroimaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological psychiatry. Cognitive neuroscience and neuroimaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bpsc.2024.07.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological psychiatry. Cognitive neuroscience and neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.bpsc.2024.07.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:要使青少年心理健康研究超越目前的成就--在不了解环境中神经生物学嵌入的情况下对大脑和环境风险因素进行复杂的描述--我们需要一些方法来揭示发育中的大脑与真实世界环境经历之间的关系:方法:我们利用青少年大脑和认知发展研究(Adolescent Brain and Cognitive Development Study)的参与者(N=2,401 名女性)调查了大脑功能、环境、情绪和行为问题之间的关联。我们应用了流形学习,这是一种从功能磁共振成像(fMRI)等高维生物医学数据中发现潜在结构的有效技术。具体来说,我们开发了外源 PHATE(E-PHATE)来模拟大脑与环境的相互作用。我们使用 E-PHATE 嵌入参与者在情绪和认知处理过程中的大脑激活情况,来预测认知、情绪和行为问题的个体差异:基线时参与者大脑激活和环境的 E-PHATE 嵌入显示,在多个皮层下区域和大规模皮层网络中,与基线时的总问题、外化问题和内化问题存在中度到高度的关联,而体素或 PHATE 方法的影响则为零到很小。基线时大脑和环境的 E-PHATE 嵌入也与两年后的情绪和行为问题有关。这些纵向预测显示,在前顶叶和注意力网络中存在一致的、适度的影响:结论:青少年大脑在环境中的嵌入可丰富对情绪和行为问题的洞察力。通过使用 E-PHATE,我们展示了如何将前沿计算方法与长期发展理论相协调,从而推进对青少年情绪和行为问题的检测和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Manifold learning uncovers nonlinear interactions between the adolescent brain and environment that predict emotional and behavioral problems.

Background: To progress adolescent mental health research beyond our present achievements - a complex account of brain and environmental risk factors without understanding neurobiological embedding in the environment - we need methods to unveil relationships between the developing brain and real-world environmental experiences.

Methods: We investigated associations among brain function, environments, and emotional and behavioral problems using participants from the Adolescent Brain and Cognitive Development Study (N=2,401 female). We applied manifold learning, a promising technique for uncovering latent structure from high-dimensional biomedical data like functional magnetic resonance imaging (fMRI). Specifically, we developed exogenous PHATE (E-PHATE) to model brain-environment interactions. We used E-PHATE embeddings of participants' brain activation during emotional and cognitive processing to predict individual differences in cognition and emotional and behavioral problems, both cross-sectionally and longitudinally.

Results: E-PHATE embeddings of participants' brain activation and environments at baseline show moderate-to-large associations with total, externalizing, and internalizing problems at baseline, across several subcortical regions and large-scale cortical networks, relative to the zero-to-small effects achieved by voxel or PHATE methods. E-PHATE embeddings of the brain and environment at baseline also relate to emotional and behavioral problems two years later. These longitudinal predictions show a consistent, moderate effect in the frontoparietal and attention networks.

Conclusions: Adolescent brain's embedding in the environment yields enriched insight into emotional and behavioral problems. Using E-PHATE, we demonstrate how the harmonization of cutting-edge computational methods with longstanding developmental theories advances detection and prediction of adolescent emotional and behavioral problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信