Anne M Stringer, Devon M Fitzgerald, Joseph T Wade
{"title":"绘制大肠埃希氏菌 DnaA 结合图谱揭示了对紧密间隔 DNA 位点结合的偏好。","authors":"Anne M Stringer, Devon M Fitzgerald, Joseph T Wade","doi":"10.1099/mic.0.001474","DOIUrl":null,"url":null,"abstract":"<p><p>DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including <i>Escherichia coli</i>. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by <i>E. coli</i> DnaA. Here, we use a ChIP-seq to map the <i>E. coli</i> DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mapping the <i>Escherichia coli</i> DnaA-binding landscape reveals a preference for binding pairs of closely spaced DNA sites.\",\"authors\":\"Anne M Stringer, Devon M Fitzgerald, Joseph T Wade\",\"doi\":\"10.1099/mic.0.001474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including <i>Escherichia coli</i>. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by <i>E. coli</i> DnaA. Here, we use a ChIP-seq to map the <i>E. coli</i> DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11317965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1099/mic.0.001474\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
DnaA 是一种广泛保守的 DNA 结合蛋白,对于包括大肠杆菌在内的许多细菌物种启动 DNA 复制至关重要。ATP 结合的 DnaA 与复制起源处的多个 9mer 位点("DnaA 框")合作结合,导致 DNA 局部解旋并招募复制机器。DnaA 还通过与目标基因上游的 DNA 位点结合,发挥转录调节器的功能。以前的研究已经发现了许多大肠杆菌 DnaA 直接进行正向和负向调控的位点。在这里,我们使用 ChIP-seq 来绘制大肠杆菌 DnaA 的结合图谱。我们的数据揭示了一个紧凑的 DnaA 调节子,它协调 DNA 复制的启动与核苷酸合成、复制、DNA 修复和 RNA 代谢相关基因的表达。我们还发现,DnaA 优先与间隔 2 或 3 bp 的成对 DnaA 盒结合。突变一对中的上游或下游位点都会破坏 DnaA 的结合,改变位点间的间隔也是如此。我们的结论是,DnaA 与几乎所有目标位点的结合都需要 DnaA 的二聚体,每个亚基与一个 DnaA 框进行关键接触。
Mapping the Escherichia coli DnaA-binding landscape reveals a preference for binding pairs of closely spaced DNA sites.
DnaA is a widely conserved DNA-binding protein that is essential for the initiation of DNA replication in many bacterial species, including Escherichia coli. Cooperative binding of ATP-bound DnaA to multiple 9mer sites ('DnaA boxes') at the origin of replication results in local unwinding of the DNA and recruitment of the replication machinery. DnaA also functions as a transcription regulator by binding to DNA sites upstream of target genes. Previous studies have identified many sites of direct positive and negative regulation by E. coli DnaA. Here, we use a ChIP-seq to map the E. coli DnaA-binding landscape. Our data reveal a compact regulon for DnaA that coordinates the initiation of DNA replication with expression of genes associated with nucleotide synthesis, replication, DNA repair and RNA metabolism. We also show that DnaA binds preferentially to pairs of DnaA boxes spaced 2 or 3 bp apart. Mutation of either the upstream or downstream site in a pair disrupts DnaA binding, as does altering the spacing between sites. We conclude that binding of DnaA at almost all target sites requires a dimer of DnaA, with each subunit making critical contacts with a DnaA box.