Tao Ye, Ning Zhang, Anbang Zhang, Xiuqi Sun, Bo Pang, Xuemei Wu
{"title":"铁蛋白沉积对大鼠小胶质细胞体外 OGD/R 模型的影响","authors":"Tao Ye, Ning Zhang, Anbang Zhang, Xiuqi Sun, Bo Pang, Xuemei Wu","doi":"10.1080/01616412.2024.2370205","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>We aimed to explore the influence of ferroptosis on an oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary rat microglia.</p><p><strong>Methods: </strong>Primary microglia were extracted from rats and cultured in vitro. The cells were subjected to a hypoxic environment for 6 h in a glucose-free medium, and then re-oxygenated for 24 h in DMEM/F12. Rat microglia were pretreated with the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin 1 for 24 h, followed by detection of cell cycle progression and apoptosis by flow cytometry. Intracellular total iron levels were measured. In addition, the relative levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined using enzyme-linked immunosorbent assay. The protein levels of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 were examined by western blotting.</p><p><strong>Results: </strong>Compared with rat microglia subjected to OGD/R, pretreatment with erastin did not influence cell apoptosis but significantly enhanced total iron levels, MDA, and ROS levels, whereas it reduced SOD levels. Moreover, it upregulated ACSL4, TFR1, and 15-lox2 and downregulated GPX4 and SLC7A11. Pretreatment with ferrostatin 1 significantly inhibited cell apoptosis and cell cycle arrest in the G0/G1 phase. It significantly reduced total iron levels, MDA, and ROS levels and enhanced SOD levels, which also downregulated ACSL4, TFR1, and 15-lox2, and upregulated GPX4 and SLC7A11.</p><p><strong>Conclusion: </strong>Our study showed that inhibition of ferroptosis is favorable against potential OGD/R-induced damage in rat microglia.</p>","PeriodicalId":19131,"journal":{"name":"Neurological Research","volume":" ","pages":"947-955"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of ferroptosis on the <i>in vitro</i> OGD/R model in rat microglia.\",\"authors\":\"Tao Ye, Ning Zhang, Anbang Zhang, Xiuqi Sun, Bo Pang, Xuemei Wu\",\"doi\":\"10.1080/01616412.2024.2370205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>We aimed to explore the influence of ferroptosis on an oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary rat microglia.</p><p><strong>Methods: </strong>Primary microglia were extracted from rats and cultured in vitro. The cells were subjected to a hypoxic environment for 6 h in a glucose-free medium, and then re-oxygenated for 24 h in DMEM/F12. Rat microglia were pretreated with the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin 1 for 24 h, followed by detection of cell cycle progression and apoptosis by flow cytometry. Intracellular total iron levels were measured. In addition, the relative levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined using enzyme-linked immunosorbent assay. The protein levels of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 were examined by western blotting.</p><p><strong>Results: </strong>Compared with rat microglia subjected to OGD/R, pretreatment with erastin did not influence cell apoptosis but significantly enhanced total iron levels, MDA, and ROS levels, whereas it reduced SOD levels. Moreover, it upregulated ACSL4, TFR1, and 15-lox2 and downregulated GPX4 and SLC7A11. Pretreatment with ferrostatin 1 significantly inhibited cell apoptosis and cell cycle arrest in the G0/G1 phase. It significantly reduced total iron levels, MDA, and ROS levels and enhanced SOD levels, which also downregulated ACSL4, TFR1, and 15-lox2, and upregulated GPX4 and SLC7A11.</p><p><strong>Conclusion: </strong>Our study showed that inhibition of ferroptosis is favorable against potential OGD/R-induced damage in rat microglia.</p>\",\"PeriodicalId\":19131,\"journal\":{\"name\":\"Neurological Research\",\"volume\":\" \",\"pages\":\"947-955\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurological Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01616412.2024.2370205\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurological Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01616412.2024.2370205","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The influence of ferroptosis on the in vitro OGD/R model in rat microglia.
Objective: We aimed to explore the influence of ferroptosis on an oxygen-glucose deprivation/reoxygenation (OGD/R) model in primary rat microglia.
Methods: Primary microglia were extracted from rats and cultured in vitro. The cells were subjected to a hypoxic environment for 6 h in a glucose-free medium, and then re-oxygenated for 24 h in DMEM/F12. Rat microglia were pretreated with the ferroptosis activator erastin and the ferroptosis inhibitor ferrostatin 1 for 24 h, followed by detection of cell cycle progression and apoptosis by flow cytometry. Intracellular total iron levels were measured. In addition, the relative levels of reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) were determined using enzyme-linked immunosorbent assay. The protein levels of 15-lox2, GPX4, SLC7A11, ACSL4, and TFR1 were examined by western blotting.
Results: Compared with rat microglia subjected to OGD/R, pretreatment with erastin did not influence cell apoptosis but significantly enhanced total iron levels, MDA, and ROS levels, whereas it reduced SOD levels. Moreover, it upregulated ACSL4, TFR1, and 15-lox2 and downregulated GPX4 and SLC7A11. Pretreatment with ferrostatin 1 significantly inhibited cell apoptosis and cell cycle arrest in the G0/G1 phase. It significantly reduced total iron levels, MDA, and ROS levels and enhanced SOD levels, which also downregulated ACSL4, TFR1, and 15-lox2, and upregulated GPX4 and SLC7A11.
Conclusion: Our study showed that inhibition of ferroptosis is favorable against potential OGD/R-induced damage in rat microglia.
期刊介绍:
Neurological Research is an international, peer-reviewed journal for reporting both basic and clinical research in the fields of neurosurgery, neurology, neuroengineering and neurosciences. It provides a medium for those who recognize the wider implications of their work and who wish to be informed of the relevant experience of others in related and more distant fields.
The scope of the journal includes:
•Stem cell applications
•Molecular neuroscience
•Neuropharmacology
•Neuroradiology
•Neurochemistry
•Biomathematical models
•Endovascular neurosurgery
•Innovation in neurosurgery.