Xin Cui, Tian-Ci Wei, Lu-Ming Guo, Guo-Yang Xu, Kuo Zhang, Qing-Shi Zhang, Xiong Xu, Gui-Yuan Wang, Litao Li, Hong-Wen Liang, Lei Wang, Xu Cui
{"title":"用于人工骨原位涂层的万古霉素载体溶胶凝胶系统,可预防手术部位感染。","authors":"Xin Cui, Tian-Ci Wei, Lu-Ming Guo, Guo-Yang Xu, Kuo Zhang, Qing-Shi Zhang, Xiong Xu, Gui-Yuan Wang, Litao Li, Hong-Wen Liang, Lei Wang, Xu Cui","doi":"10.1002/mabi.202400078","DOIUrl":null,"url":null,"abstract":"<p>Surgical site infections (SSIs) related to implants have always been a major challenge for clinical doctors and patients. Clinically, doctors may directly apply antibiotics into the wound to prevent SSIs. However, this strategy is strongly associated with experience of doctors on the amount and the location of antibiotics. Herein, an in situ constructable sol–gel system is developed containing antibiotics during surgical process and validated the efficacy against SSIs in beagles. The system involves chitosan (CS), β-glycerophosphate (β-GP) and vancomycin (VAN), which can be adsorbed onto porous hydroxyapatite (HA) and form VAN-CS/β-GP@HA hydrogel in a short time. The VAN concentration from VAN-CS/β-GP@HA hydrogel is higher than minimum inhibitory concentration (MIC) against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) at the 21st day in vitro. In an in vivo canine model for the prevention of SSIs in the femoral condyle, VAN-CS/β-GP@HA exhibits excellent biocompatibility, antimicrobial properties, and promotion of bone healing. In all, the CS/β-GP instant sol–gel system is able to in situ encapsulate antibiotics and adhere on artificial bone implants during the surgery, effectively preventing SSIs related to implants.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vancomycin-Loaded Sol–Gel System for In Situ Coating of Artificial Bone to Prevent Surgical Site Infections\",\"authors\":\"Xin Cui, Tian-Ci Wei, Lu-Ming Guo, Guo-Yang Xu, Kuo Zhang, Qing-Shi Zhang, Xiong Xu, Gui-Yuan Wang, Litao Li, Hong-Wen Liang, Lei Wang, Xu Cui\",\"doi\":\"10.1002/mabi.202400078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surgical site infections (SSIs) related to implants have always been a major challenge for clinical doctors and patients. Clinically, doctors may directly apply antibiotics into the wound to prevent SSIs. However, this strategy is strongly associated with experience of doctors on the amount and the location of antibiotics. Herein, an in situ constructable sol–gel system is developed containing antibiotics during surgical process and validated the efficacy against SSIs in beagles. The system involves chitosan (CS), β-glycerophosphate (β-GP) and vancomycin (VAN), which can be adsorbed onto porous hydroxyapatite (HA) and form VAN-CS/β-GP@HA hydrogel in a short time. The VAN concentration from VAN-CS/β-GP@HA hydrogel is higher than minimum inhibitory concentration (MIC) against <i>Staphylococcus aureus</i> (<i>S. aureus</i>) at the 21st day in vitro. In an in vivo canine model for the prevention of SSIs in the femoral condyle, VAN-CS/β-GP@HA exhibits excellent biocompatibility, antimicrobial properties, and promotion of bone healing. In all, the CS/β-GP instant sol–gel system is able to in situ encapsulate antibiotics and adhere on artificial bone implants during the surgery, effectively preventing SSIs related to implants.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400078\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400078","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Vancomycin-Loaded Sol–Gel System for In Situ Coating of Artificial Bone to Prevent Surgical Site Infections
Surgical site infections (SSIs) related to implants have always been a major challenge for clinical doctors and patients. Clinically, doctors may directly apply antibiotics into the wound to prevent SSIs. However, this strategy is strongly associated with experience of doctors on the amount and the location of antibiotics. Herein, an in situ constructable sol–gel system is developed containing antibiotics during surgical process and validated the efficacy against SSIs in beagles. The system involves chitosan (CS), β-glycerophosphate (β-GP) and vancomycin (VAN), which can be adsorbed onto porous hydroxyapatite (HA) and form VAN-CS/β-GP@HA hydrogel in a short time. The VAN concentration from VAN-CS/β-GP@HA hydrogel is higher than minimum inhibitory concentration (MIC) against Staphylococcus aureus (S. aureus) at the 21st day in vitro. In an in vivo canine model for the prevention of SSIs in the femoral condyle, VAN-CS/β-GP@HA exhibits excellent biocompatibility, antimicrobial properties, and promotion of bone healing. In all, the CS/β-GP instant sol–gel system is able to in situ encapsulate antibiotics and adhere on artificial bone implants during the surgery, effectively preventing SSIs related to implants.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.