{"title":"通过与有效载体共转染,揭示无效递送载体的 mRNA 递送瓶颈。","authors":"","doi":"10.1016/j.ejpb.2024.114414","DOIUrl":null,"url":null,"abstract":"<div><p>The messenger RNA (mRNA) SARS-CoV-2 vaccines have demonstrated the therapeutic potential of this novel drug modality. Protein expression is the consequence of a multistep delivery process that relies on proper packaging into nanoparticle carriers to protect the mRNA against degradation enabling effective cellular uptake and endosomal release, and liberating the mRNA in the cytosol. Bottlenecks along this route remain challenging to pinpoint. Although methods to assess endosomal escape of carriers have been developed, versatile strategies to identify bottlenecks along the delivery trajectory are missing. Here, it is shown that co-incubating an inefficient nanoparticle formulation with an efficient one solves this problem. Cells were co-incubated with mRNA nanoparticles formed with either the efficient cell-penetrating peptide (CPP) PepFect14 or the inefficient CPP nona-arginine (R9). Co-transfection enhanced cellular uptake and endosomal escape of R9-formulated mRNA, resulting in protein expression, demonstrating that both vectors enter cells along the same route. In addition, cells were transfected with a galectin-9-mCherry fusion protein to detect endosomal rupture. Remarkably, despite endosomal release, mRNA remained confined to punctate structures, identifying mRNA liberation as a further bottleneck. In summary, co-transfection offers a rapid means to identify bottlenecks in cytosolic mRNA delivery, supporting the rational design and optimization of intracellular mRNA delivery systems.</p></div>","PeriodicalId":12024,"journal":{"name":"European Journal of Pharmaceutics and Biopharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939641124002406/pdfft?md5=6c148397c51397343c6d2f075ce56330&pid=1-s2.0-S0939641124002406-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Unraveling mRNA delivery bottlenecks of ineffective delivery vectors by co-transfection with effective carriers\",\"authors\":\"\",\"doi\":\"10.1016/j.ejpb.2024.114414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The messenger RNA (mRNA) SARS-CoV-2 vaccines have demonstrated the therapeutic potential of this novel drug modality. Protein expression is the consequence of a multistep delivery process that relies on proper packaging into nanoparticle carriers to protect the mRNA against degradation enabling effective cellular uptake and endosomal release, and liberating the mRNA in the cytosol. Bottlenecks along this route remain challenging to pinpoint. Although methods to assess endosomal escape of carriers have been developed, versatile strategies to identify bottlenecks along the delivery trajectory are missing. Here, it is shown that co-incubating an inefficient nanoparticle formulation with an efficient one solves this problem. Cells were co-incubated with mRNA nanoparticles formed with either the efficient cell-penetrating peptide (CPP) PepFect14 or the inefficient CPP nona-arginine (R9). Co-transfection enhanced cellular uptake and endosomal escape of R9-formulated mRNA, resulting in protein expression, demonstrating that both vectors enter cells along the same route. In addition, cells were transfected with a galectin-9-mCherry fusion protein to detect endosomal rupture. Remarkably, despite endosomal release, mRNA remained confined to punctate structures, identifying mRNA liberation as a further bottleneck. In summary, co-transfection offers a rapid means to identify bottlenecks in cytosolic mRNA delivery, supporting the rational design and optimization of intracellular mRNA delivery systems.</p></div>\",\"PeriodicalId\":12024,\"journal\":{\"name\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939641124002406/pdfft?md5=6c148397c51397343c6d2f075ce56330&pid=1-s2.0-S0939641124002406-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Pharmaceutics and Biopharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939641124002406\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutics and Biopharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939641124002406","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Unraveling mRNA delivery bottlenecks of ineffective delivery vectors by co-transfection with effective carriers
The messenger RNA (mRNA) SARS-CoV-2 vaccines have demonstrated the therapeutic potential of this novel drug modality. Protein expression is the consequence of a multistep delivery process that relies on proper packaging into nanoparticle carriers to protect the mRNA against degradation enabling effective cellular uptake and endosomal release, and liberating the mRNA in the cytosol. Bottlenecks along this route remain challenging to pinpoint. Although methods to assess endosomal escape of carriers have been developed, versatile strategies to identify bottlenecks along the delivery trajectory are missing. Here, it is shown that co-incubating an inefficient nanoparticle formulation with an efficient one solves this problem. Cells were co-incubated with mRNA nanoparticles formed with either the efficient cell-penetrating peptide (CPP) PepFect14 or the inefficient CPP nona-arginine (R9). Co-transfection enhanced cellular uptake and endosomal escape of R9-formulated mRNA, resulting in protein expression, demonstrating that both vectors enter cells along the same route. In addition, cells were transfected with a galectin-9-mCherry fusion protein to detect endosomal rupture. Remarkably, despite endosomal release, mRNA remained confined to punctate structures, identifying mRNA liberation as a further bottleneck. In summary, co-transfection offers a rapid means to identify bottlenecks in cytosolic mRNA delivery, supporting the rational design and optimization of intracellular mRNA delivery systems.
期刊介绍:
The European Journal of Pharmaceutics and Biopharmaceutics provides a medium for the publication of novel, innovative and hypothesis-driven research from the areas of Pharmaceutics and Biopharmaceutics.
Topics covered include for example:
Design and development of drug delivery systems for pharmaceuticals and biopharmaceuticals (small molecules, proteins, nucleic acids)
Aspects of manufacturing process design
Biomedical aspects of drug product design
Strategies and formulations for controlled drug transport across biological barriers
Physicochemical aspects of drug product development
Novel excipients for drug product design
Drug delivery and controlled release systems for systemic and local applications
Nanomaterials for therapeutic and diagnostic purposes
Advanced therapy medicinal products
Medical devices supporting a distinct pharmacological effect.