{"title":"长期(≥5 年)胆囊切除术对肠道微生物群变化的影响及其对结直肠癌风险的影响:基于 16S rDNA 测序分析。","authors":"Xiecheng Zhou, Liang Xu, Qixing Zhang, Wenqi Chen, Hongwei Xie","doi":"10.1097/MEG.0000000000002827","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Colorectal cancer (CRC) continues to be a major global health concern. Recent advances in molecular biology have highlighted the gut microbiota's role in CRC. This study investigates long-term (≥5 years) gut microbiota changes in patients postcholecystectomy, comparing them with CRC patients and healthy controls to assess their impact on CRC development.</p><p><strong>Methods: </strong>Sixty participants were divided into three groups: 20 healthy controls, 20 postcholecystectomy (PCE) patients, and 20 CRC patients. Demographic data and stool samples were collected. Gut microbiota composition, abundance, and diversity were analyzed using high-throughput 16S rDNA sequencing.</p><p><strong>Results: </strong>Significant differences in microbial community, α-diversity ( P < 0.05) and β-diversity ( P = 0.006), were observed among the three groups. At the phylum level, Firmicutes abundance was significantly reduced in PCE and CRC groups compared with the control group ( P = 0.002), while changes in other phyla were not significant ( P >0.05). At the genus level, Bacteroides , Dialister , and Parabacteroides increased progressively from control to PCE to CRC groups ( P = 0.004, 0.001, and 0.002). Prevotella decreased across these groups ( P = 0.041). Faecalibacterium and Roseburia abundances were reduced in PCE and CRC groups compared with controls ( P = 0.001 and 0.003). The Random Forest algorithm identified Parabacteroides , Bacteroides , Roseburia , and Dialister as key distinguishing genera.</p><p><strong>Conclusion: </strong>The gut microbiota of long-term (≥5 years) PCE patients significantly differs from that of controls and resembles that of CRC patients, suggesting a potential link between cholecystectomy and CRC development through key microbial changes.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of long-term (≥5 years) cholecystectomy on gut microbiota changes and its influence on colorectal cancer risk: based on 16S rDNA sequencing analysis.\",\"authors\":\"Xiecheng Zhou, Liang Xu, Qixing Zhang, Wenqi Chen, Hongwei Xie\",\"doi\":\"10.1097/MEG.0000000000002827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Colorectal cancer (CRC) continues to be a major global health concern. Recent advances in molecular biology have highlighted the gut microbiota's role in CRC. This study investigates long-term (≥5 years) gut microbiota changes in patients postcholecystectomy, comparing them with CRC patients and healthy controls to assess their impact on CRC development.</p><p><strong>Methods: </strong>Sixty participants were divided into three groups: 20 healthy controls, 20 postcholecystectomy (PCE) patients, and 20 CRC patients. Demographic data and stool samples were collected. Gut microbiota composition, abundance, and diversity were analyzed using high-throughput 16S rDNA sequencing.</p><p><strong>Results: </strong>Significant differences in microbial community, α-diversity ( P < 0.05) and β-diversity ( P = 0.006), were observed among the three groups. At the phylum level, Firmicutes abundance was significantly reduced in PCE and CRC groups compared with the control group ( P = 0.002), while changes in other phyla were not significant ( P >0.05). At the genus level, Bacteroides , Dialister , and Parabacteroides increased progressively from control to PCE to CRC groups ( P = 0.004, 0.001, and 0.002). Prevotella decreased across these groups ( P = 0.041). Faecalibacterium and Roseburia abundances were reduced in PCE and CRC groups compared with controls ( P = 0.001 and 0.003). The Random Forest algorithm identified Parabacteroides , Bacteroides , Roseburia , and Dialister as key distinguishing genera.</p><p><strong>Conclusion: </strong>The gut microbiota of long-term (≥5 years) PCE patients significantly differs from that of controls and resembles that of CRC patients, suggesting a potential link between cholecystectomy and CRC development through key microbial changes.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/MEG.0000000000002827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MEG.0000000000002827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
The impact of long-term (≥5 years) cholecystectomy on gut microbiota changes and its influence on colorectal cancer risk: based on 16S rDNA sequencing analysis.
Background: Colorectal cancer (CRC) continues to be a major global health concern. Recent advances in molecular biology have highlighted the gut microbiota's role in CRC. This study investigates long-term (≥5 years) gut microbiota changes in patients postcholecystectomy, comparing them with CRC patients and healthy controls to assess their impact on CRC development.
Methods: Sixty participants were divided into three groups: 20 healthy controls, 20 postcholecystectomy (PCE) patients, and 20 CRC patients. Demographic data and stool samples were collected. Gut microbiota composition, abundance, and diversity were analyzed using high-throughput 16S rDNA sequencing.
Results: Significant differences in microbial community, α-diversity ( P < 0.05) and β-diversity ( P = 0.006), were observed among the three groups. At the phylum level, Firmicutes abundance was significantly reduced in PCE and CRC groups compared with the control group ( P = 0.002), while changes in other phyla were not significant ( P >0.05). At the genus level, Bacteroides , Dialister , and Parabacteroides increased progressively from control to PCE to CRC groups ( P = 0.004, 0.001, and 0.002). Prevotella decreased across these groups ( P = 0.041). Faecalibacterium and Roseburia abundances were reduced in PCE and CRC groups compared with controls ( P = 0.001 and 0.003). The Random Forest algorithm identified Parabacteroides , Bacteroides , Roseburia , and Dialister as key distinguishing genera.
Conclusion: The gut microbiota of long-term (≥5 years) PCE patients significantly differs from that of controls and resembles that of CRC patients, suggesting a potential link between cholecystectomy and CRC development through key microbial changes.