{"title":"用于开发新型 PARP 靶向 PET 探针的喹唑啉-2,4(1H,3H)-二酮支架,用于肿瘤成像。","authors":"Chunfeng He, Hui Shi, Boyu Tan, Zhaoning Jiang, Rui Cao, Jiamin Zhu, Kun Qian, Xiao Wang, Xiaoping Xu, Chunrong Qu, Shaoli Song, Zhen Cheng","doi":"10.1007/s00259-024-06843-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Overexpression of Poly (ADP-ribose) polymerase (PARP) is associated with many diseases such as oncological diseases. Several PARP-targeting radiotracers have been developed to detect tumor in recent years. Two <sup>18</sup>F labelled probes based on Olaparib and Rucaparib molecular scaffolds have been evaluated in clinical trials, but their slow hepatic clearance hinders their tumor imaging performance. Although a number of positron emission tomography (PET) probes with lower liver uptake have been designed, the tumor to background ratios remains to be low. Therefore, we designed a probe with low lipid-water partition coefficient to solve this problem.</p><p><strong>Methods: </strong>A pyridine-containing quinazoline-2,4(1 H,3 H)-dione PARP-targeting group was rationally designed and used to conjugate with the chelator 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to prepare the lead compound named as SMIC-2001 for radiolabeling. In vitro experiments, the lipid-water partition coefficient, stability, binding affinity, and cellular uptake of [<sup>68</sup>Ga]Ga-SMIC-2001 were determined. In vivo experiments, the U87MG xenograft models were used to evaluate its tumor imaging properties.</p><p><strong>Results: </strong>[<sup>68</sup>Ga]Ga-SMIC-2001 showed a low Log D<sub>7.4</sub> (-3.82 ± 0.06) and high affinity for PARP-1 (48.13 nM). In vivo study revealed that it exhibited a high tumor-to-background contrast in the U87MG xenograft models and mainly renal clearance. And the ratios of tumor to main organs were high except for the kidney (e.g. tumor to liver ratio reached 2.20 ± 0.51) at 60 min p.i.</p><p><strong>Conclusion: </strong>In summary, pyridine-containing quinazoline-2,4(1 H,3 H)-dione is a novel PARP-targeting molecular scaffold for imaging probe development, and [<sup>68</sup>Ga]Ga-SMIC-2001 is a highly promising PET probe capable of imaging tumors with PARP overexpression.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":null,"pages":null},"PeriodicalIF":8.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quinazoline-2,4(1 H,3 H)-dione Scaffold for development of a novel PARP-targeting PET probe for tumor imaging.\",\"authors\":\"Chunfeng He, Hui Shi, Boyu Tan, Zhaoning Jiang, Rui Cao, Jiamin Zhu, Kun Qian, Xiao Wang, Xiaoping Xu, Chunrong Qu, Shaoli Song, Zhen Cheng\",\"doi\":\"10.1007/s00259-024-06843-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Overexpression of Poly (ADP-ribose) polymerase (PARP) is associated with many diseases such as oncological diseases. Several PARP-targeting radiotracers have been developed to detect tumor in recent years. Two <sup>18</sup>F labelled probes based on Olaparib and Rucaparib molecular scaffolds have been evaluated in clinical trials, but their slow hepatic clearance hinders their tumor imaging performance. Although a number of positron emission tomography (PET) probes with lower liver uptake have been designed, the tumor to background ratios remains to be low. Therefore, we designed a probe with low lipid-water partition coefficient to solve this problem.</p><p><strong>Methods: </strong>A pyridine-containing quinazoline-2,4(1 H,3 H)-dione PARP-targeting group was rationally designed and used to conjugate with the chelator 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to prepare the lead compound named as SMIC-2001 for radiolabeling. In vitro experiments, the lipid-water partition coefficient, stability, binding affinity, and cellular uptake of [<sup>68</sup>Ga]Ga-SMIC-2001 were determined. In vivo experiments, the U87MG xenograft models were used to evaluate its tumor imaging properties.</p><p><strong>Results: </strong>[<sup>68</sup>Ga]Ga-SMIC-2001 showed a low Log D<sub>7.4</sub> (-3.82 ± 0.06) and high affinity for PARP-1 (48.13 nM). In vivo study revealed that it exhibited a high tumor-to-background contrast in the U87MG xenograft models and mainly renal clearance. And the ratios of tumor to main organs were high except for the kidney (e.g. tumor to liver ratio reached 2.20 ± 0.51) at 60 min p.i.</p><p><strong>Conclusion: </strong>In summary, pyridine-containing quinazoline-2,4(1 H,3 H)-dione is a novel PARP-targeting molecular scaffold for imaging probe development, and [<sup>68</sup>Ga]Ga-SMIC-2001 is a highly promising PET probe capable of imaging tumors with PARP overexpression.</p>\",\"PeriodicalId\":11909,\"journal\":{\"name\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00259-024-06843-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-024-06843-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Quinazoline-2,4(1 H,3 H)-dione Scaffold for development of a novel PARP-targeting PET probe for tumor imaging.
Purpose: Overexpression of Poly (ADP-ribose) polymerase (PARP) is associated with many diseases such as oncological diseases. Several PARP-targeting radiotracers have been developed to detect tumor in recent years. Two 18F labelled probes based on Olaparib and Rucaparib molecular scaffolds have been evaluated in clinical trials, but their slow hepatic clearance hinders their tumor imaging performance. Although a number of positron emission tomography (PET) probes with lower liver uptake have been designed, the tumor to background ratios remains to be low. Therefore, we designed a probe with low lipid-water partition coefficient to solve this problem.
Methods: A pyridine-containing quinazoline-2,4(1 H,3 H)-dione PARP-targeting group was rationally designed and used to conjugate with the chelator 2,2',2'',2'''-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid (DOTA) to prepare the lead compound named as SMIC-2001 for radiolabeling. In vitro experiments, the lipid-water partition coefficient, stability, binding affinity, and cellular uptake of [68Ga]Ga-SMIC-2001 were determined. In vivo experiments, the U87MG xenograft models were used to evaluate its tumor imaging properties.
Results: [68Ga]Ga-SMIC-2001 showed a low Log D7.4 (-3.82 ± 0.06) and high affinity for PARP-1 (48.13 nM). In vivo study revealed that it exhibited a high tumor-to-background contrast in the U87MG xenograft models and mainly renal clearance. And the ratios of tumor to main organs were high except for the kidney (e.g. tumor to liver ratio reached 2.20 ± 0.51) at 60 min p.i.
Conclusion: In summary, pyridine-containing quinazoline-2,4(1 H,3 H)-dione is a novel PARP-targeting molecular scaffold for imaging probe development, and [68Ga]Ga-SMIC-2001 is a highly promising PET probe capable of imaging tumors with PARP overexpression.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.