Toi Ketehouli, Josephine Pasche, Victor Hugo Buttrós, Erica M. Goss, Samuel J. Martins
{"title":"植物病害的地下世界:根圈菌群失调降低了地面植物对细菌性叶斑病的抵抗力,并改变了植物转录组。","authors":"Toi Ketehouli, Josephine Pasche, Victor Hugo Buttrós, Erica M. Goss, Samuel J. Martins","doi":"10.1111/1462-2920.16676","DOIUrl":null,"url":null,"abstract":"<p>Just as the human gut microbiome is colonized by a variety of microbes, so too is the rhizosphere of plants. An imbalance in this microbial community, known as dysbiosis, can have a negative impact on plant health. This study sought to explore the effect of rhizosphere dysbiosis on the health of tomato plants (<i>Solanum lycopersicum</i> L.), using them and the foliar bacterial spot pathogen <i>Xanthomonas perforans</i> as model organisms. The rhizospheres of 3-week-old tomato plants were treated with either streptomycin or water as a control, and then spray-inoculated with <i>X. perforans</i> after 24 h. Half of the plants that were treated with both streptomycin and <i>X. perforans</i> received soil microbiome transplants from uninfected plant donors 48 h after the streptomycin was applied. The plants treated with streptomycin showed a 26% increase in disease severity compared to those that did not receive the antibiotic. However, the plants that received the soil microbiome transplant exhibited an intermediate level of disease severity. The antibiotic-treated plants demonstrated a reduced abundance of rhizobacterial taxa such as Cyanobacteria from the genus <i>Cylindrospermum</i>. They also showed a down-regulation of genes related to plant primary and secondary metabolism, and an up-regulation of plant defence genes associated with induced systemic resistance. This study highlights the vital role that beneficial rhizosphere microbes play in disease resistance, even against foliar pathogens.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16676","citationCount":"0","resultStr":"{\"title\":\"The underground world of plant disease: Rhizosphere dysbiosis reduces above-ground plant resistance to bacterial leaf spot and alters plant transcriptome\",\"authors\":\"Toi Ketehouli, Josephine Pasche, Victor Hugo Buttrós, Erica M. Goss, Samuel J. Martins\",\"doi\":\"10.1111/1462-2920.16676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Just as the human gut microbiome is colonized by a variety of microbes, so too is the rhizosphere of plants. An imbalance in this microbial community, known as dysbiosis, can have a negative impact on plant health. This study sought to explore the effect of rhizosphere dysbiosis on the health of tomato plants (<i>Solanum lycopersicum</i> L.), using them and the foliar bacterial spot pathogen <i>Xanthomonas perforans</i> as model organisms. The rhizospheres of 3-week-old tomato plants were treated with either streptomycin or water as a control, and then spray-inoculated with <i>X. perforans</i> after 24 h. Half of the plants that were treated with both streptomycin and <i>X. perforans</i> received soil microbiome transplants from uninfected plant donors 48 h after the streptomycin was applied. The plants treated with streptomycin showed a 26% increase in disease severity compared to those that did not receive the antibiotic. However, the plants that received the soil microbiome transplant exhibited an intermediate level of disease severity. The antibiotic-treated plants demonstrated a reduced abundance of rhizobacterial taxa such as Cyanobacteria from the genus <i>Cylindrospermum</i>. They also showed a down-regulation of genes related to plant primary and secondary metabolism, and an up-regulation of plant defence genes associated with induced systemic resistance. This study highlights the vital role that beneficial rhizosphere microbes play in disease resistance, even against foliar pathogens.</p>\",\"PeriodicalId\":11898,\"journal\":{\"name\":\"Environmental microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.16676\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16676\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.16676","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The underground world of plant disease: Rhizosphere dysbiosis reduces above-ground plant resistance to bacterial leaf spot and alters plant transcriptome
Just as the human gut microbiome is colonized by a variety of microbes, so too is the rhizosphere of plants. An imbalance in this microbial community, known as dysbiosis, can have a negative impact on plant health. This study sought to explore the effect of rhizosphere dysbiosis on the health of tomato plants (Solanum lycopersicum L.), using them and the foliar bacterial spot pathogen Xanthomonas perforans as model organisms. The rhizospheres of 3-week-old tomato plants were treated with either streptomycin or water as a control, and then spray-inoculated with X. perforans after 24 h. Half of the plants that were treated with both streptomycin and X. perforans received soil microbiome transplants from uninfected plant donors 48 h after the streptomycin was applied. The plants treated with streptomycin showed a 26% increase in disease severity compared to those that did not receive the antibiotic. However, the plants that received the soil microbiome transplant exhibited an intermediate level of disease severity. The antibiotic-treated plants demonstrated a reduced abundance of rhizobacterial taxa such as Cyanobacteria from the genus Cylindrospermum. They also showed a down-regulation of genes related to plant primary and secondary metabolism, and an up-regulation of plant defence genes associated with induced systemic resistance. This study highlights the vital role that beneficial rhizosphere microbes play in disease resistance, even against foliar pathogens.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens