{"title":"吸食大麻的青少年的杏仁核体积和抑郁症状。","authors":"","doi":"10.1016/j.bbr.2024.115150","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Both cannabis use and depressive symptomology increase in prevalence throughout adolescence. Concurrently, the brain is undergoing neurodevelopment in important limbic regions, such as the amygdala. Prior research indicates the amygdala may also be related to cannabis use and depressive symptoms. We aimed to investigate the effects of adolescent cannabis use on amygdala volumes as well as the interaction of cannabis use and amygdala morphometry on depressive symptoms in youth.</p></div><div><h3>Method</h3><p>Two-hundred-twenty-four participants (ages 12–15), balanced by sex assigned at birth, were selected from a sub-sample of the Adolescent Brain Cognitive Development (ABCD) Study based on hair toxicology and self-report measures of cannabis use. Participants positive for cannabinoids in hair and/or self-reported cannabis use were demographically matched to youth with no self-reported or confirmed cannabis use. The guardians of these youth reported depression symptoms on the Child Behavioral Checklist. Linear mixed effect models were run investigating cannabis use group on amygdala volumes bilaterally, controlling for whole brain volume and random effects of scanner type. Additional analyses examined cannabis group status and bilateral amygdala volume on depression symptoms.</p></div><div><h3>Results</h3><p>Cannabis use was not significantly associated with amygdala volume but was associated with increased depressive symptoms (p<0.01). Cannabis group interacted with amygdala volume, such that individuals with smaller volumes had increased depressive symptoms within the cannabis group (p’s<0.01–0.02).</p></div><div><h3>Conclusion</h3><p>Aberrations in amygdala volume based on cannabis use were not found in early adolescence; however, more depressive symptoms were related to cannabis group. Youth who use cannabis and have smaller amygdala volumes were at increased risk for depressive symptomology, suggesting potential neurovulnerabilities to cannabis use.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amygdala volume and depression symptoms in young adolescents who use cannabis\",\"authors\":\"\",\"doi\":\"10.1016/j.bbr.2024.115150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Both cannabis use and depressive symptomology increase in prevalence throughout adolescence. Concurrently, the brain is undergoing neurodevelopment in important limbic regions, such as the amygdala. Prior research indicates the amygdala may also be related to cannabis use and depressive symptoms. We aimed to investigate the effects of adolescent cannabis use on amygdala volumes as well as the interaction of cannabis use and amygdala morphometry on depressive symptoms in youth.</p></div><div><h3>Method</h3><p>Two-hundred-twenty-four participants (ages 12–15), balanced by sex assigned at birth, were selected from a sub-sample of the Adolescent Brain Cognitive Development (ABCD) Study based on hair toxicology and self-report measures of cannabis use. Participants positive for cannabinoids in hair and/or self-reported cannabis use were demographically matched to youth with no self-reported or confirmed cannabis use. The guardians of these youth reported depression symptoms on the Child Behavioral Checklist. Linear mixed effect models were run investigating cannabis use group on amygdala volumes bilaterally, controlling for whole brain volume and random effects of scanner type. Additional analyses examined cannabis group status and bilateral amygdala volume on depression symptoms.</p></div><div><h3>Results</h3><p>Cannabis use was not significantly associated with amygdala volume but was associated with increased depressive symptoms (p<0.01). Cannabis group interacted with amygdala volume, such that individuals with smaller volumes had increased depressive symptoms within the cannabis group (p’s<0.01–0.02).</p></div><div><h3>Conclusion</h3><p>Aberrations in amygdala volume based on cannabis use were not found in early adolescence; however, more depressive symptoms were related to cannabis group. Youth who use cannabis and have smaller amygdala volumes were at increased risk for depressive symptomology, suggesting potential neurovulnerabilities to cannabis use.</p></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824003061\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003061","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Amygdala volume and depression symptoms in young adolescents who use cannabis
Introduction
Both cannabis use and depressive symptomology increase in prevalence throughout adolescence. Concurrently, the brain is undergoing neurodevelopment in important limbic regions, such as the amygdala. Prior research indicates the amygdala may also be related to cannabis use and depressive symptoms. We aimed to investigate the effects of adolescent cannabis use on amygdala volumes as well as the interaction of cannabis use and amygdala morphometry on depressive symptoms in youth.
Method
Two-hundred-twenty-four participants (ages 12–15), balanced by sex assigned at birth, were selected from a sub-sample of the Adolescent Brain Cognitive Development (ABCD) Study based on hair toxicology and self-report measures of cannabis use. Participants positive for cannabinoids in hair and/or self-reported cannabis use were demographically matched to youth with no self-reported or confirmed cannabis use. The guardians of these youth reported depression symptoms on the Child Behavioral Checklist. Linear mixed effect models were run investigating cannabis use group on amygdala volumes bilaterally, controlling for whole brain volume and random effects of scanner type. Additional analyses examined cannabis group status and bilateral amygdala volume on depression symptoms.
Results
Cannabis use was not significantly associated with amygdala volume but was associated with increased depressive symptoms (p<0.01). Cannabis group interacted with amygdala volume, such that individuals with smaller volumes had increased depressive symptoms within the cannabis group (p’s<0.01–0.02).
Conclusion
Aberrations in amygdala volume based on cannabis use were not found in early adolescence; however, more depressive symptoms were related to cannabis group. Youth who use cannabis and have smaller amygdala volumes were at increased risk for depressive symptomology, suggesting potential neurovulnerabilities to cannabis use.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.