通过纳米粒子扩散成像揭示软骨的详细功能:计算机断层扫描与有限元研究。

IF 3 2区 医学 Q3 ENGINEERING, BIOMEDICAL
Juuso Tuppurainen, Petri Paakkari, Jiri Jäntti, Mikko T. Nissinen, Maria C. Fugazzola, René van Weeren, Sampo Ylisiurua, Miika T. Nieminen, Heikki Kröger, Brian D. Snyder, Anisha Joenathan, Mark W. Grinstaff, Hanna Matikka, Rami K. Korhonen, Janne T. A. Mäkelä
{"title":"通过纳米粒子扩散成像揭示软骨的详细功能:计算机断层扫描与有限元研究。","authors":"Juuso Tuppurainen,&nbsp;Petri Paakkari,&nbsp;Jiri Jäntti,&nbsp;Mikko T. Nissinen,&nbsp;Maria C. Fugazzola,&nbsp;René van Weeren,&nbsp;Sampo Ylisiurua,&nbsp;Miika T. Nieminen,&nbsp;Heikki Kröger,&nbsp;Brian D. Snyder,&nbsp;Anisha Joenathan,&nbsp;Mark W. Grinstaff,&nbsp;Hanna Matikka,&nbsp;Rami K. Korhonen,&nbsp;Janne T. A. Mäkelä","doi":"10.1007/s10439-024-03552-7","DOIUrl":null,"url":null,"abstract":"<div><p>The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (<i>n</i> = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta<sub>2</sub>O<sub>5</sub>-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta<sub>2</sub>O<sub>5</sub>-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.</p></div>","PeriodicalId":7986,"journal":{"name":"Annals of Biomedical Engineering","volume":"52 9","pages":"2584 - 2595"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329549/pdf/","citationCount":"0","resultStr":"{\"title\":\"Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study\",\"authors\":\"Juuso Tuppurainen,&nbsp;Petri Paakkari,&nbsp;Jiri Jäntti,&nbsp;Mikko T. Nissinen,&nbsp;Maria C. Fugazzola,&nbsp;René van Weeren,&nbsp;Sampo Ylisiurua,&nbsp;Miika T. Nieminen,&nbsp;Heikki Kröger,&nbsp;Brian D. Snyder,&nbsp;Anisha Joenathan,&nbsp;Mark W. Grinstaff,&nbsp;Hanna Matikka,&nbsp;Rami K. Korhonen,&nbsp;Janne T. A. Mäkelä\",\"doi\":\"10.1007/s10439-024-03552-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (<i>n</i> = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta<sub>2</sub>O<sub>5</sub>-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta<sub>2</sub>O<sub>5</sub>-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.</p></div>\",\"PeriodicalId\":7986,\"journal\":{\"name\":\"Annals of Biomedical Engineering\",\"volume\":\"52 9\",\"pages\":\"2584 - 2595\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329549/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10439-024-03552-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10439-024-03552-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

关节软骨在行走或跑步等活动中承受巨大机械压力的能力取决于其独特的结构。由于分析这些特性的复杂性,将详细的组织特性整合到特定对象的生物力学模型中具有挑战性。这种局限性影响了模型复制软骨功能的准确性,也影响了预测能力。为了解决这个问题,在特定成分水平上揭示软骨功能的方法至关重要。在这项研究中,我们证明了通过计算建模得出的单个成分特异性生物力学特性可以通过一种新型纳米粒子对比增强计算机断层扫描(CECT)方法进行预测。我们使用造影剂增强微计算机断层扫描(µCECT)对从马跗关节采集的关节软骨样本(n = 60)进行成像,以确定造影剂在样本中的摄入量,并将其与从纤维增强孔弹性有限元模型中得出的软骨功能特性进行比较。研究了两种不同的成像技术:采用阳离子氧化钽纳米粒子(Ta2O5-cNP)造影剂的传统能量整合 µCECT 和利用由 Ta2O5-cNP 和中性碘克沙醇组成的双造影剂的新型光子计数 µCECT。研究结果表明,这种方法能够评估软骨的纤维和非纤维功能,以及软骨中受渗透性影响的流体流动。这一发现表明了将这些特定功能特性纳入生物力学计算模型的可行性,为软骨诊断和治疗的个性化方法带来了潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study

Revealing Detailed Cartilage Function Through Nanoparticle Diffusion Imaging: A Computed Tomography & Finite Element Study

The ability of articular cartilage to withstand significant mechanical stresses during activities, such as walking or running, relies on its distinctive structure. Integrating detailed tissue properties into subject-specific biomechanical models is challenging due to the complexity of analyzing these characteristics. This limitation compromises the accuracy of models in replicating cartilage function and impacts predictive capabilities. To address this, methods revealing cartilage function at the constituent-specific level are essential. In this study, we demonstrated that computational modeling derived individual constituent-specific biomechanical properties could be predicted by a novel nanoparticle contrast-enhanced computer tomography (CECT) method. We imaged articular cartilage samples collected from the equine stifle joint (n = 60) using contrast-enhanced micro-computed tomography (µCECT) to determine contrast agents’ intake within the samples, and compared those to cartilage functional properties, derived from a fibril-reinforced poroelastic finite element model. Two distinct imaging techniques were investigated: conventional energy-integrating µCECT employing a cationic tantalum oxide nanoparticle (Ta2O5-cNP) contrast agent and novel photon-counting µCECT utilizing a dual-contrast agent, comprising Ta2O5-cNP and neutral iodixanol. The results demonstrate the capacity to evaluate fibrillar and non-fibrillar functionality of cartilage, along with permeability-affected fluid flow in cartilage. This finding indicates the feasibility of incorporating these specific functional properties into biomechanical computational models, holding potential for personalized approaches to cartilage diagnostics and treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Biomedical Engineering
Annals of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
7.50
自引率
15.80%
发文量
212
审稿时长
3 months
期刊介绍: Annals of Biomedical Engineering is an official journal of the Biomedical Engineering Society, publishing original articles in the major fields of bioengineering and biomedical engineering. The Annals is an interdisciplinary and international journal with the aim to highlight integrated approaches to the solutions of biological and biomedical problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信