二维 Be2P4 作为 Na/K 离子电池的一种有前途的热电材料和阳极。

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nanoscale Pub Date : 2024-07-16 DOI:10.1039/D4NR01132E
Nidhi Verma, Poonam Chauhan and Ashok Kumar
{"title":"二维 Be2P4 作为 Na/K 离子电池的一种有前途的热电材料和阳极。","authors":"Nidhi Verma, Poonam Chauhan and Ashok Kumar","doi":"10.1039/D4NR01132E","DOIUrl":null,"url":null,"abstract":"<p >Incredibly effective and flexible energy conversion and storage systems hold great promise for portable self-powered electronic devices. Owing to their large surface area, exceptional atomic structures, superior electrical conductivity and good mechanical flexibility, two-dimensional (2D) materials are recognized as an attractive option for energy conversion and storage application. In this work, we examined the stability, electronic, thermoelectric and electrochemical aspects of a novel 2D Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer by adopting density functional theory (DFT). The Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer exhibits a direct semiconductor gap of 0.9 eV (HSE06), large Young's modulus (∼198 GPa), high carrier mobility (∼10<small><sup>4</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>) and a low excitonic binding energy of 0.11 eV. Our calculated findings suggest that Be<small><sub>2</sub></small>P<small><sub>4</sub></small> shows a lattice thermal conductivity of 1.02 W m K<small><sup>−1</sup></small> at 700 K, resulting in moderate thermoelectric performance (<em>ZT</em> ∼ 0.7), encouraging its use in thermoelectric materials. In addition, a higher adsorption energy of −2.28 eV (−2.52 eV) and less diffusion barrier of 0.22 eV (0.17 eV) for Na(K)-ion batteries promote fast ion transport in the Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer. This material also shows a high specific capacity and superior energy density of 8460 W h kg<small><sup>−1</sup></small> (8883 W h kg<small><sup>−1</sup></small>) for Na(K)-ion batteries. Thus, our results offer insightful information for investigating potential thermoelectric and flexible anode materials based on the Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 30","pages":" 14418-14432"},"PeriodicalIF":5.1000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-dimensional Be2P4 as a promising thermoelectric material and anode for Na/K-ion batteries†\",\"authors\":\"Nidhi Verma, Poonam Chauhan and Ashok Kumar\",\"doi\":\"10.1039/D4NR01132E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Incredibly effective and flexible energy conversion and storage systems hold great promise for portable self-powered electronic devices. Owing to their large surface area, exceptional atomic structures, superior electrical conductivity and good mechanical flexibility, two-dimensional (2D) materials are recognized as an attractive option for energy conversion and storage application. In this work, we examined the stability, electronic, thermoelectric and electrochemical aspects of a novel 2D Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer by adopting density functional theory (DFT). The Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer exhibits a direct semiconductor gap of 0.9 eV (HSE06), large Young's modulus (∼198 GPa), high carrier mobility (∼10<small><sup>4</sup></small> cm<small><sup>2</sup></small> V<small><sup>−1</sup></small> s<small><sup>−1</sup></small>) and a low excitonic binding energy of 0.11 eV. Our calculated findings suggest that Be<small><sub>2</sub></small>P<small><sub>4</sub></small> shows a lattice thermal conductivity of 1.02 W m K<small><sup>−1</sup></small> at 700 K, resulting in moderate thermoelectric performance (<em>ZT</em> ∼ 0.7), encouraging its use in thermoelectric materials. In addition, a higher adsorption energy of −2.28 eV (−2.52 eV) and less diffusion barrier of 0.22 eV (0.17 eV) for Na(K)-ion batteries promote fast ion transport in the Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer. This material also shows a high specific capacity and superior energy density of 8460 W h kg<small><sup>−1</sup></small> (8883 W h kg<small><sup>−1</sup></small>) for Na(K)-ion batteries. Thus, our results offer insightful information for investigating potential thermoelectric and flexible anode materials based on the Be<small><sub>2</sub></small>P<small><sub>4</sub></small> monolayer.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 30\",\"pages\":\" 14418-14432\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01132e\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/nr/d4nr01132e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高效灵活的能量转换和储存系统为便携式自供电电子设备带来了巨大的发展前景。由于二维(2D)材料具有较大的表面积、特殊的原子结构、优异的导电性和良好的机械灵活性,因此被认为是能量转换和存储应用的一种极具吸引力的选择。在这项工作中,我们采用密度泛函理论(DFT)研究了新型二维 Be2P4 单层的稳定性、电子、热电和电化学方面。该 Be2P4 单层具有 0.9 eV 的直接半导体间隙(HSE06)、较大的杨氏模量(∼198 GPa)、高载流子迁移率(∼104 cm2 V-1 s-1)和 0.11 eV 的低激子结合能。我们的计算结果表明,Be2P4 在 700 K 时的晶格热导率为 1.02 W m K-1,因此具有适度的热电性能(ZT ∼ 0.7),鼓励将其用于热电材料。此外,Be2P4 单层对 Na(K)离子电池具有较高的吸附能 -2.28 eV(-2.52 eV)和较低的扩散势垒 0.22 eV(0.17 eV),从而促进了离子在 Be2P4 单层中的快速传输。这种材料还显示出较高的比容量和优越的能量密度,Na(K)离子电池的能量密度为 8460 W h kg-1(8883 W h kg-1)。因此,我们的研究结果为研究基于 Be2P4 单层的潜在热电和柔性阳极材料提供了有洞察力的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Two-dimensional Be2P4 as a promising thermoelectric material and anode for Na/K-ion batteries†

Two-dimensional Be2P4 as a promising thermoelectric material and anode for Na/K-ion batteries†

Two-dimensional Be2P4 as a promising thermoelectric material and anode for Na/K-ion batteries†

Incredibly effective and flexible energy conversion and storage systems hold great promise for portable self-powered electronic devices. Owing to their large surface area, exceptional atomic structures, superior electrical conductivity and good mechanical flexibility, two-dimensional (2D) materials are recognized as an attractive option for energy conversion and storage application. In this work, we examined the stability, electronic, thermoelectric and electrochemical aspects of a novel 2D Be2P4 monolayer by adopting density functional theory (DFT). The Be2P4 monolayer exhibits a direct semiconductor gap of 0.9 eV (HSE06), large Young's modulus (∼198 GPa), high carrier mobility (∼104 cm2 V−1 s−1) and a low excitonic binding energy of 0.11 eV. Our calculated findings suggest that Be2P4 shows a lattice thermal conductivity of 1.02 W m K−1 at 700 K, resulting in moderate thermoelectric performance (ZT ∼ 0.7), encouraging its use in thermoelectric materials. In addition, a higher adsorption energy of −2.28 eV (−2.52 eV) and less diffusion barrier of 0.22 eV (0.17 eV) for Na(K)-ion batteries promote fast ion transport in the Be2P4 monolayer. This material also shows a high specific capacity and superior energy density of 8460 W h kg−1 (8883 W h kg−1) for Na(K)-ion batteries. Thus, our results offer insightful information for investigating potential thermoelectric and flexible anode materials based on the Be2P4 monolayer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信