{"title":"在发育激素拮抗剂对森蛙胚后发育影响的节律性基因表达研究中,鉴定用于RT-qPCR数据归一化的特定参考基因。","authors":"Minurani Dalai, Anita Jagota","doi":"10.3389/finsc.2024.1362473","DOIUrl":null,"url":null,"abstract":"<p><p><i>Bombyx mori</i> is a lepidopteran holometabolous insect with distinct developmental stages: egg, larvae, pupae, and adult. The lepidopteran insect undergoes major modifications in the central nervous system (CNS) so as to adapt to the lifestyle of these distinct stages with specific habitats and functions from voraciously feeding larval stages to flying reproductive adults via dormant pupal stages. Such transitions are linked to transcriptional, epigenetic, and translational complexities. Therefore, studying rhythmic gene expression in CNS of various developmental stages and the effects of antagonists on developmental hormones requires a very stable reference gene (RG). To facilitate rhythmic gene expression studies using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in <i>B. mori</i> and the effect of developmental hormone juvenile hormone (JH) and 20-hydroxy ecdysone hormone (20 HE), antagonists Precocene 1 and testosterone, respectively, were used. Eight candidate RGs, namely, <i>Translational initiation factor 3 subunit 4</i> (TI3S4), <i>Translational initiation factor 3 subunit 5</i> (TI3S5), <i>Ribosomal protein subunit 7</i> (RPs7), <i>TATA-binding protein association factor</i> (TAF13), <i>Translational initiation factor 4 A</i> (TI4A), <i>Ribosomal protein</i> (RPL32), <i>Elongation factor</i> 1 (EF1), and <i>Arginine kinase</i> (AK), were assessed in the CNS of <i>B. mori</i>. The postembryonic developmental (PED) stages used were the fifth late larval instar, early pupa, mid pupa, late pupa, and adult. The assessments were done at four different time points, Zeitgeber time (ZT) 0, 6, 12, and 18, to find stability towards 24-h rhythmic expression. RefFinder, geNorm, and Ct value analysis were performed. RefFinder and geNORM studies suggested stability order as TI3S4 > TI3S5 > RPs7, but Ct value evaluation showed stability order as TI3S5 > TI3S4 > RPs7. We therefore demonstrated that TI3S4, TI3S5, and RPs7 can be used as RG in various PED stages in CNS of <i>B. mori</i> (Strain: CB-hybrid, PM×CSR2) towards studies with effects of JH and 20 HE antagonists.</p>","PeriodicalId":517424,"journal":{"name":"Frontiers in insect science","volume":"4 ","pages":"1362473"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239437/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification of specific reference gene for normalization of RT-qPCR data in rhythmic gene expression studies of the effect of developmental hormone antagonist in postembryonic development in <i>Bombyx mori</i>.\",\"authors\":\"Minurani Dalai, Anita Jagota\",\"doi\":\"10.3389/finsc.2024.1362473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Bombyx mori</i> is a lepidopteran holometabolous insect with distinct developmental stages: egg, larvae, pupae, and adult. The lepidopteran insect undergoes major modifications in the central nervous system (CNS) so as to adapt to the lifestyle of these distinct stages with specific habitats and functions from voraciously feeding larval stages to flying reproductive adults via dormant pupal stages. Such transitions are linked to transcriptional, epigenetic, and translational complexities. Therefore, studying rhythmic gene expression in CNS of various developmental stages and the effects of antagonists on developmental hormones requires a very stable reference gene (RG). To facilitate rhythmic gene expression studies using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in <i>B. mori</i> and the effect of developmental hormone juvenile hormone (JH) and 20-hydroxy ecdysone hormone (20 HE), antagonists Precocene 1 and testosterone, respectively, were used. Eight candidate RGs, namely, <i>Translational initiation factor 3 subunit 4</i> (TI3S4), <i>Translational initiation factor 3 subunit 5</i> (TI3S5), <i>Ribosomal protein subunit 7</i> (RPs7), <i>TATA-binding protein association factor</i> (TAF13), <i>Translational initiation factor 4 A</i> (TI4A), <i>Ribosomal protein</i> (RPL32), <i>Elongation factor</i> 1 (EF1), and <i>Arginine kinase</i> (AK), were assessed in the CNS of <i>B. mori</i>. The postembryonic developmental (PED) stages used were the fifth late larval instar, early pupa, mid pupa, late pupa, and adult. The assessments were done at four different time points, Zeitgeber time (ZT) 0, 6, 12, and 18, to find stability towards 24-h rhythmic expression. RefFinder, geNorm, and Ct value analysis were performed. RefFinder and geNORM studies suggested stability order as TI3S4 > TI3S5 > RPs7, but Ct value evaluation showed stability order as TI3S5 > TI3S4 > RPs7. We therefore demonstrated that TI3S4, TI3S5, and RPs7 can be used as RG in various PED stages in CNS of <i>B. mori</i> (Strain: CB-hybrid, PM×CSR2) towards studies with effects of JH and 20 HE antagonists.</p>\",\"PeriodicalId\":517424,\"journal\":{\"name\":\"Frontiers in insect science\",\"volume\":\"4 \",\"pages\":\"1362473\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11239437/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in insect science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/finsc.2024.1362473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in insect science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/finsc.2024.1362473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Identification of specific reference gene for normalization of RT-qPCR data in rhythmic gene expression studies of the effect of developmental hormone antagonist in postembryonic development in Bombyx mori.
Bombyx mori is a lepidopteran holometabolous insect with distinct developmental stages: egg, larvae, pupae, and adult. The lepidopteran insect undergoes major modifications in the central nervous system (CNS) so as to adapt to the lifestyle of these distinct stages with specific habitats and functions from voraciously feeding larval stages to flying reproductive adults via dormant pupal stages. Such transitions are linked to transcriptional, epigenetic, and translational complexities. Therefore, studying rhythmic gene expression in CNS of various developmental stages and the effects of antagonists on developmental hormones requires a very stable reference gene (RG). To facilitate rhythmic gene expression studies using reverse transcription quantitative polymerase chain reaction (RT-qPCR) in B. mori and the effect of developmental hormone juvenile hormone (JH) and 20-hydroxy ecdysone hormone (20 HE), antagonists Precocene 1 and testosterone, respectively, were used. Eight candidate RGs, namely, Translational initiation factor 3 subunit 4 (TI3S4), Translational initiation factor 3 subunit 5 (TI3S5), Ribosomal protein subunit 7 (RPs7), TATA-binding protein association factor (TAF13), Translational initiation factor 4 A (TI4A), Ribosomal protein (RPL32), Elongation factor 1 (EF1), and Arginine kinase (AK), were assessed in the CNS of B. mori. The postembryonic developmental (PED) stages used were the fifth late larval instar, early pupa, mid pupa, late pupa, and adult. The assessments were done at four different time points, Zeitgeber time (ZT) 0, 6, 12, and 18, to find stability towards 24-h rhythmic expression. RefFinder, geNorm, and Ct value analysis were performed. RefFinder and geNORM studies suggested stability order as TI3S4 > TI3S5 > RPs7, but Ct value evaluation showed stability order as TI3S5 > TI3S4 > RPs7. We therefore demonstrated that TI3S4, TI3S5, and RPs7 can be used as RG in various PED stages in CNS of B. mori (Strain: CB-hybrid, PM×CSR2) towards studies with effects of JH and 20 HE antagonists.