Marta Zaffaroni, Julien Papaïx, Abebayehu G Geffersa, Jean-François Rey, Loup Rimbaud, Frédéric Fabre
{"title":"在农业景观中将多年生作物的单基因抗性品种与金字塔型栽培品种结合起来,在大多数生产情况下都会损害金字塔型栽培的效益。","authors":"Marta Zaffaroni, Julien Papaïx, Abebayehu G Geffersa, Jean-François Rey, Loup Rimbaud, Frédéric Fabre","doi":"10.1094/PHYTO-02-24-0075-R","DOIUrl":null,"url":null,"abstract":"<p><p>Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model <i>landsepi</i> to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2310-2321"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations.\",\"authors\":\"Marta Zaffaroni, Julien Papaïx, Abebayehu G Geffersa, Jean-François Rey, Loup Rimbaud, Frédéric Fabre\",\"doi\":\"10.1094/PHYTO-02-24-0075-R\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model <i>landsepi</i> to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.</p>\",\"PeriodicalId\":20410,\"journal\":{\"name\":\"Phytopathology\",\"volume\":\" \",\"pages\":\"2310-2321\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1094/PHYTO-02-24-0075-R\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-02-24-0075-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Combining Single-Gene-Resistant and Pyramided Cultivars of Perennial Crops in Agricultural Landscapes Compromises Pyramiding Benefits in Most Production Situations.
Although resistant cultivars are valuable in safeguarding crops against diseases, they can be rapidly overcome by pathogens. Numerous strategies have been proposed to delay pathogen adaptation (evolutionary control) while still ensuring effective protection (epidemiological control). For perennial crops, multiple resistance genes can be deployed (i) in the same cultivar (pyramiding strategy); in single-gene-resistant cultivars grown (ii) in the same field (mixture strategy) or (iii) in different fields (mosaic strategy); or (iv) in hybrid strategies that combine the three previous options. In addition, the spatial scale at which resistant cultivars are deployed can affect the plant-pathogen interaction: Small fields are thought to reduce pest density and disease transmission. Here, we used the spatially explicit stochastic model landsepi to compare the evolutionary and epidemiological control across spatial scales and deployment strategies relying on two major resistance genes. Our results, broadly focused on resistance to downy mildew of grapevine, show that the evolutionary control provided by the pyramiding strategy is at risk when single-gene-resistant cultivars are concurrently planted in the landscape (hybrid strategies), especially at low mutation probability. Moreover, the effectiveness of pyramiding compared with hybrid strategies is influenced by whether the adapted pathogen pays a fitness cost across all hosts or only for unnecessary virulence, particularly when the fitness cost is high rather than intermediate. Finally, field size did not affect model outputs for a wide range of mutation probabilities and associated fitness costs. The socioeconomic policies favoring the adoption of optimal resistant management strategies are discussed.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.