{"title":"从生物利用度、骨亲和力和细胞毒性方面确定双膦酸盐的特性。","authors":"Monika Zielińska, Amanda Pacholak, Natalia Burlaga, Ewa Chmielewska, Adam Voelkel, Ewa Kaczorek","doi":"10.1007/s43440-024-00624-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The study aimed to evaluate the therapeutic potential of fourteen newly synthesized bisphosphonates by assessing their bioavailability, bone affinity, and cytotoxicity. These bisphosphonates included a series of aminomethylenebisphosphonates and standard compounds such as risedronate and tiludronate.</p><p><strong>Methods: </strong>Drug permeability was determined using Parallel Artificial Membrane Permeability Assays (PAMPA), while bone affinity was assessed by sorption on hydroxyapatite. Bacterial cell response to the bisphosphonates was also examined using Lactobacillus paracasei cells as a model.</p><p><strong>Results: </strong>Several tested compounds, including BP3 to BP8 and BP11, which feature substituents in the pyridine ring such as methyl groups, iodine, bromine, chlorine, or hydroxyl groups, demonstrated potentially more beneficial therapeutic properties than commercially used bisphosphonates. These compounds showed stronger bone affinity and higher gastrointestinal absorption with comparable or lower cytotoxic effects. Specifically, BP11 exhibited the highest bone affinity, while BP8 and BP11 showed the greatest permeability.</p><p><strong>Conclusions: </strong>The findings suggest that BP3 BP8, and BP11 are promising candidates for further research. These results highlight the importance of comprehensively evaluating bisphosphonates' therapeutic properties to identify effective treatments for osteoporosis and other bone diseases.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":"1160-1173"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387443/pdf/","citationCount":"0","resultStr":"{\"title\":\"Determination of bisphosphonate properties in terms of bioavailability, bone affinity, and cytotoxicity.\",\"authors\":\"Monika Zielińska, Amanda Pacholak, Natalia Burlaga, Ewa Chmielewska, Adam Voelkel, Ewa Kaczorek\",\"doi\":\"10.1007/s43440-024-00624-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The study aimed to evaluate the therapeutic potential of fourteen newly synthesized bisphosphonates by assessing their bioavailability, bone affinity, and cytotoxicity. These bisphosphonates included a series of aminomethylenebisphosphonates and standard compounds such as risedronate and tiludronate.</p><p><strong>Methods: </strong>Drug permeability was determined using Parallel Artificial Membrane Permeability Assays (PAMPA), while bone affinity was assessed by sorption on hydroxyapatite. Bacterial cell response to the bisphosphonates was also examined using Lactobacillus paracasei cells as a model.</p><p><strong>Results: </strong>Several tested compounds, including BP3 to BP8 and BP11, which feature substituents in the pyridine ring such as methyl groups, iodine, bromine, chlorine, or hydroxyl groups, demonstrated potentially more beneficial therapeutic properties than commercially used bisphosphonates. These compounds showed stronger bone affinity and higher gastrointestinal absorption with comparable or lower cytotoxic effects. Specifically, BP11 exhibited the highest bone affinity, while BP8 and BP11 showed the greatest permeability.</p><p><strong>Conclusions: </strong>The findings suggest that BP3 BP8, and BP11 are promising candidates for further research. These results highlight the importance of comprehensively evaluating bisphosphonates' therapeutic properties to identify effective treatments for osteoporosis and other bone diseases.</p>\",\"PeriodicalId\":19947,\"journal\":{\"name\":\"Pharmacological Reports\",\"volume\":\" \",\"pages\":\"1160-1173\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11387443/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43440-024-00624-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-024-00624-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Determination of bisphosphonate properties in terms of bioavailability, bone affinity, and cytotoxicity.
Background: The study aimed to evaluate the therapeutic potential of fourteen newly synthesized bisphosphonates by assessing their bioavailability, bone affinity, and cytotoxicity. These bisphosphonates included a series of aminomethylenebisphosphonates and standard compounds such as risedronate and tiludronate.
Methods: Drug permeability was determined using Parallel Artificial Membrane Permeability Assays (PAMPA), while bone affinity was assessed by sorption on hydroxyapatite. Bacterial cell response to the bisphosphonates was also examined using Lactobacillus paracasei cells as a model.
Results: Several tested compounds, including BP3 to BP8 and BP11, which feature substituents in the pyridine ring such as methyl groups, iodine, bromine, chlorine, or hydroxyl groups, demonstrated potentially more beneficial therapeutic properties than commercially used bisphosphonates. These compounds showed stronger bone affinity and higher gastrointestinal absorption with comparable or lower cytotoxic effects. Specifically, BP11 exhibited the highest bone affinity, while BP8 and BP11 showed the greatest permeability.
Conclusions: The findings suggest that BP3 BP8, and BP11 are promising candidates for further research. These results highlight the importance of comprehensively evaluating bisphosphonates' therapeutic properties to identify effective treatments for osteoporosis and other bone diseases.
期刊介绍:
Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures.
Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology.
Studies of plant extracts are not suitable for Pharmacological Reports.