Hamza Elsayed Ahmad Mohamed, Ali Talha Khalil, Khaoula Hkiri, Muhammad Ayaz, Assad Usman, Abdul Sadiq, Farhat Ullah, Muhammad Arif Khan, Ikram Ullah, Malik Maaza
{"title":"hyphaene thebaica-还原纳米沙门氏菌的潜在纳米医药应用和理化性质。","authors":"Hamza Elsayed Ahmad Mohamed, Ali Talha Khalil, Khaoula Hkiri, Muhammad Ayaz, Assad Usman, Abdul Sadiq, Farhat Ullah, Muhammad Arif Khan, Ikram Ullah, Malik Maaza","doi":"10.1002/jemt.24654","DOIUrl":null,"url":null,"abstract":"<p><p>Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm<sub>2</sub>O<sub>3</sub> NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424<sup>-</sup>, and 561 cm<sup>-1</sup>. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC<sub>50</sub> value of 1081 μg/mL. HT-Sm<sub>2</sub>O<sub>3</sub> NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm<sub>2</sub>O<sub>3</sub> NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC<sub>50</sub> value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC<sub>50</sub> value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC<sub>50</sub> value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC<sub>50</sub> value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm<sub>2</sub>O<sub>3</sub> NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential nanomedicinal applications and physicochemical nature of Hyphaene thebaica-reduced nano-samaria.\",\"authors\":\"Hamza Elsayed Ahmad Mohamed, Ali Talha Khalil, Khaoula Hkiri, Muhammad Ayaz, Assad Usman, Abdul Sadiq, Farhat Ullah, Muhammad Arif Khan, Ikram Ullah, Malik Maaza\",\"doi\":\"10.1002/jemt.24654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm<sub>2</sub>O<sub>3</sub> NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424<sup>-</sup>, and 561 cm<sup>-1</sup>. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm<sub>2</sub>O<sub>3</sub> nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC<sub>50</sub> value of 1081 μg/mL. HT-Sm<sub>2</sub>O<sub>3</sub> NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm<sub>2</sub>O<sub>3</sub> NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC<sub>50</sub> value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC<sub>50</sub> value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC<sub>50</sub> value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC<sub>50</sub> value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm<sub>2</sub>O<sub>3</sub> NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/jemt.24654\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Potential nanomedicinal applications and physicochemical nature of Hyphaene thebaica-reduced nano-samaria.
Herein we described the biofabrication of samarium oxide nanoparticles (HT-Sm2O3 NPs) by applying the aqueous fruit extract of Hyphaene thebaica was utilized as an eco-friendly chelating agent. The prepared NPs were subjected to various physicochemical properties and potential in biomedical applications. X-ray Diffraction (XRD) pattern revealed sharp peaks that corroborated with the Joint Committee on Powder Diffraction Standards (JCPDS) card no. 00-042-1464. Crystallite size obtained from Debye-Scherrer approximation and Williamson-Hall (W-H) plot was 28.73 and 69.3 nm, respectively. Optical bandgap was calculated by employing Kubelka-Munk (K-M) function and was found to be ~4.58 eV. Raman shift was observed at 121, 351, 424-, and 561 cm-1. Photoluminescence (PL) spectra revealed two major peaks positioned at 360 and 540 nm. The high-resolution transmission electron microscopy (HR-TEM) analysis of HT-Sm2O3 nanoparticles (NPs) showed that they predominantly have spherical to cuboidal shapes. Additionally, the selected area electron diffraction (SAED) pattern presented spotty rings, indicating a high level of crystallinity in these NPs. The potential nanomedicine applications were studied using diverse bioassays using different treatments. The antioxidant activity demonstrated 45.71% ± 1.13% inhibition at 1000 μg/mL. Brine shrimp lethality assay revealed the highest cytotoxicity of 46.67% ± 3.33% at 1000 μg/mL and LC50 value of 1081 μg/mL. HT-Sm2O3 NPs exhibited inhibition of angiogenesis (20.41% ± 1.18%) at of 1000 μg/mL. MTT assay results indicated that HT-Sm2O3 NPs exhibit inhibitory effects on cell lines. Specifically, these NPs showed an IC50 value of 104.6 μg/mL against 3T3 cells. Against MCF-7 cells, the NPs demonstrated an IC50 value of 413.25 μg/mL. Additionally, in the inhibition of acetylcholinesterase (AChE), the newly synthesized NPs showed an IC50 value of 320 μg/mL. The antidiabetic assessment through α-glucosidase and α-amylase inhibition assays revealed, an IC50 value of 380 μg/mL for α-glucosidase and 952 μg/mL for α-amylase was calculated. Overall, our study suggested that the Sm2O3 NPs possess moderate anticancer, cholinesterase inhibition, and antidiabetic potential, however, needs further assessment. RESEARCH HIGHLIGHTS: In this work, nano-samaria is synthesized using an eco-friendly and green approach. The nanoparticles were characterized using techniques such as Raman, HR-TEM, FTIR, DRS, XRD, and so on, and the applications were studied using multiple in vitro bioassays for Diabetes, Alzheimer, and Cancer. The nano-samaria revealed good potential for potential biomedical applications.