Oscar Andersson Forsman, Henrik Sjöström, Per Svenningsson, Tobias Granberg
{"title":"帕金森病中的磁共振定量易感性图谱和多壳扩散相结合。","authors":"Oscar Andersson Forsman, Henrik Sjöström, Per Svenningsson, Tobias Granberg","doi":"10.1111/jon.13222","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Quantitative susceptibility mapping (QSM), neurite orientation dispersion and density imaging (NODDI), and the g-ratio have separately shown differences between Parkinson's disease (PD) and healthy controls. The g-ratio has, however, not been studied in PD in the substantia nigra (SN) and the putamen. A combination of these methods could also potentially be a complementary imaging biomarker for PD. This study aimed to assess the diagnostic performance of QSM, NODDI, the g-ratio, and a combined QSM-NODDI imaging marker in the SN and putamen of PD patients.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>In this prospective study, the diagnostic performance of median region of interest values was compared in a cohort of 15 participants with PD and 14 healthy controls after manual segmentation. The diagnostic performance was assessed using the area under curve (AUC) for the receiving operator characteristic.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Median QSM in the contralateral SN identified PD with AUC 0.77, and median isotropic volume fraction identified PD in the ipsilateral SN with AUC 0.68. A combined NODDI-QSM marker improved diagnostic performance (AUC 0.80). No significant differences were found in the g-ratio.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>A combination of median QSM and median isotropic volume fraction improves the differentiation of PD from healthy controls and is a potential biomarker in the diagnostics of PD. This confirms previously reported results indicating that combining QSM and NODDI modestly improves differentiation of PD.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"34 5","pages":"603-611"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13222","citationCount":"0","resultStr":"{\"title\":\"Combined MR quantitative susceptibility mapping and multi-shell diffusion in Parkinson's disease\",\"authors\":\"Oscar Andersson Forsman, Henrik Sjöström, Per Svenningsson, Tobias Granberg\",\"doi\":\"10.1111/jon.13222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Quantitative susceptibility mapping (QSM), neurite orientation dispersion and density imaging (NODDI), and the g-ratio have separately shown differences between Parkinson's disease (PD) and healthy controls. The g-ratio has, however, not been studied in PD in the substantia nigra (SN) and the putamen. A combination of these methods could also potentially be a complementary imaging biomarker for PD. This study aimed to assess the diagnostic performance of QSM, NODDI, the g-ratio, and a combined QSM-NODDI imaging marker in the SN and putamen of PD patients.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>In this prospective study, the diagnostic performance of median region of interest values was compared in a cohort of 15 participants with PD and 14 healthy controls after manual segmentation. The diagnostic performance was assessed using the area under curve (AUC) for the receiving operator characteristic.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Median QSM in the contralateral SN identified PD with AUC 0.77, and median isotropic volume fraction identified PD in the ipsilateral SN with AUC 0.68. A combined NODDI-QSM marker improved diagnostic performance (AUC 0.80). No significant differences were found in the g-ratio.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>A combination of median QSM and median isotropic volume fraction improves the differentiation of PD from healthy controls and is a potential biomarker in the diagnostics of PD. This confirms previously reported results indicating that combining QSM and NODDI modestly improves differentiation of PD.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"34 5\",\"pages\":\"603-611\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jon.13222\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.13222\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.13222","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Combined MR quantitative susceptibility mapping and multi-shell diffusion in Parkinson's disease
Background and Purpose
Quantitative susceptibility mapping (QSM), neurite orientation dispersion and density imaging (NODDI), and the g-ratio have separately shown differences between Parkinson's disease (PD) and healthy controls. The g-ratio has, however, not been studied in PD in the substantia nigra (SN) and the putamen. A combination of these methods could also potentially be a complementary imaging biomarker for PD. This study aimed to assess the diagnostic performance of QSM, NODDI, the g-ratio, and a combined QSM-NODDI imaging marker in the SN and putamen of PD patients.
Methods
In this prospective study, the diagnostic performance of median region of interest values was compared in a cohort of 15 participants with PD and 14 healthy controls after manual segmentation. The diagnostic performance was assessed using the area under curve (AUC) for the receiving operator characteristic.
Results
Median QSM in the contralateral SN identified PD with AUC 0.77, and median isotropic volume fraction identified PD in the ipsilateral SN with AUC 0.68. A combined NODDI-QSM marker improved diagnostic performance (AUC 0.80). No significant differences were found in the g-ratio.
Conclusion
A combination of median QSM and median isotropic volume fraction improves the differentiation of PD from healthy controls and is a potential biomarker in the diagnostics of PD. This confirms previously reported results indicating that combining QSM and NODDI modestly improves differentiation of PD.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!