Alexander J. Hoffman, John W. Finger Jr., Andreas N. Kavazis, Haruka Wada
{"title":"生命早期的热调节会改变热休克蛋白的表达,以应对成年热应力。","authors":"Alexander J. Hoffman, John W. Finger Jr., Andreas N. Kavazis, Haruka Wada","doi":"10.1002/jez.2858","DOIUrl":null,"url":null,"abstract":"<p>Developmental environmental stressors can have instructive effects on an organism's phenotype. This developmental plasticity can prepare organisms for potentially stressful future environments, circumventing detrimental effects on fitness. However, the physiological mechanisms underlying such adaptive plasticity are understudied, especially in vertebrates. We hypothesized that captive male zebra finches (<i>Taeniopygia castanotis)</i> exposed to a mild heat conditioning during development would acquire a persisting thermotolerance, and exhibit increased heat-shock protein (HSP) levels associated with a decrease in oxidative damage when exposed to a high-intensity stressor in adulthood. To test this, we exposed male finches to a prolonged mild heat conditioning (38°C) or control (22°C) treatment as juveniles. Then in a 2 × 2 factorial manner, these finches were exposed to a high heat stressor (42°C) or control (22°C) treatment as adults. Following the adult treatment, we collected testes and liver tissue and measured HSP70, HSP90, and HSP60 protein levels. In the testes, finches exhibited lower levels of HSP90 and HSP60 when exposed to the high heat stressor in adulthood if they were exposed to the mild heat conditioning as juveniles. In the liver, finches exposed to the high heat stressor in adulthood had reduced HSP90 and HSP60 levels, regardless of whether they were conditioned as juveniles. In some cases, elevated testes HSP60 levels were associated with increased liver oxidative damage and diminishment of a condition-dependent trait, indicating potential stress-induced tradeoffs. Our results indicate that a mild conditioning during development can have persisting effects on HSP expression and acquired thermotolerance.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early life thermal conditioning alters heat-shock protein expression in response to an adult thermal stressor\",\"authors\":\"Alexander J. Hoffman, John W. Finger Jr., Andreas N. Kavazis, Haruka Wada\",\"doi\":\"10.1002/jez.2858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developmental environmental stressors can have instructive effects on an organism's phenotype. This developmental plasticity can prepare organisms for potentially stressful future environments, circumventing detrimental effects on fitness. However, the physiological mechanisms underlying such adaptive plasticity are understudied, especially in vertebrates. We hypothesized that captive male zebra finches (<i>Taeniopygia castanotis)</i> exposed to a mild heat conditioning during development would acquire a persisting thermotolerance, and exhibit increased heat-shock protein (HSP) levels associated with a decrease in oxidative damage when exposed to a high-intensity stressor in adulthood. To test this, we exposed male finches to a prolonged mild heat conditioning (38°C) or control (22°C) treatment as juveniles. Then in a 2 × 2 factorial manner, these finches were exposed to a high heat stressor (42°C) or control (22°C) treatment as adults. Following the adult treatment, we collected testes and liver tissue and measured HSP70, HSP90, and HSP60 protein levels. In the testes, finches exhibited lower levels of HSP90 and HSP60 when exposed to the high heat stressor in adulthood if they were exposed to the mild heat conditioning as juveniles. In the liver, finches exposed to the high heat stressor in adulthood had reduced HSP90 and HSP60 levels, regardless of whether they were conditioned as juveniles. In some cases, elevated testes HSP60 levels were associated with increased liver oxidative damage and diminishment of a condition-dependent trait, indicating potential stress-induced tradeoffs. Our results indicate that a mild conditioning during development can have persisting effects on HSP expression and acquired thermotolerance.</p>\",\"PeriodicalId\":15711,\"journal\":{\"name\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of experimental zoology. Part A, Ecological and integrative physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jez.2858\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2858","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Early life thermal conditioning alters heat-shock protein expression in response to an adult thermal stressor
Developmental environmental stressors can have instructive effects on an organism's phenotype. This developmental plasticity can prepare organisms for potentially stressful future environments, circumventing detrimental effects on fitness. However, the physiological mechanisms underlying such adaptive plasticity are understudied, especially in vertebrates. We hypothesized that captive male zebra finches (Taeniopygia castanotis) exposed to a mild heat conditioning during development would acquire a persisting thermotolerance, and exhibit increased heat-shock protein (HSP) levels associated with a decrease in oxidative damage when exposed to a high-intensity stressor in adulthood. To test this, we exposed male finches to a prolonged mild heat conditioning (38°C) or control (22°C) treatment as juveniles. Then in a 2 × 2 factorial manner, these finches were exposed to a high heat stressor (42°C) or control (22°C) treatment as adults. Following the adult treatment, we collected testes and liver tissue and measured HSP70, HSP90, and HSP60 protein levels. In the testes, finches exhibited lower levels of HSP90 and HSP60 when exposed to the high heat stressor in adulthood if they were exposed to the mild heat conditioning as juveniles. In the liver, finches exposed to the high heat stressor in adulthood had reduced HSP90 and HSP60 levels, regardless of whether they were conditioned as juveniles. In some cases, elevated testes HSP60 levels were associated with increased liver oxidative damage and diminishment of a condition-dependent trait, indicating potential stress-induced tradeoffs. Our results indicate that a mild conditioning during development can have persisting effects on HSP expression and acquired thermotolerance.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.