{"title":"ESF1 和 MIPEP 蛋白促进雌激素受体阳性乳腺癌的增殖,并与患者的预后有关。","authors":"Qing Yu, Chunhua Qu, Jinliang Liang, Peiqi Chen, Kaiying Zhang, Yanji Zhang, Yuening Zhang, Zherui Li, Shaojun Liu, Zhaoshou Yang, Hongyan Sun, Anli Yang","doi":"10.1186/s12014-024-09502-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Estrogen receptor-positive (ER+) breast cancer accounts for two-thirds of all breast cancers, and its early and late recurrences still threaten patients' long-term survival and quality of life. Finding candidate tumor antigens and potential therapeutic targets is critical to addressing these unmet needs.</p><p><strong>Method: </strong>The isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis was employed to identify the differentially expressed proteins (DEPs) between ER + breast cancer and corresponding adjacent normal tissue. Candidate DEPs were screened by bioinformatic analyses, and their expression was confirmed by immunohistochemical (IHC) staining and western blot. A series of in vitro experiments, including wound healing assay, colony formation, and cell cycle assay, were performed to reveal the functions of selected DEPs. Additionally, their clinical significances were further analyzed.</p><p><strong>Result: </strong>A total of 369 DEPs (fold change ≥ 2.0 or ≤ 0.66, P < 0.05) were discovered. Compared with normal tissue, 358 proteins were up-regulated and 11 proteins were down-regulated in ER + breast cancer. GO and KEGG enrichment analysis showed that DEPs were closely associated with RNA regulation and metabolic pathways. STRING analysis found ESF1 and MIPEP were the hub genes in breast cancer, whose increased expressions were verified by the IHC staining and western blot. Knocking down ESF1 and MIPEP inhibited colony formation and increased cell apoptosis. Besides, knocking down ESF1 inhibited wound healing but not MIPEP. In addition, ESF1 and MIPEP expression were negatively associated with patient prognosis.</p><p><strong>Conclusion: </strong>The upregulation of ESF1 and MIPEP promoted ER + breast cancer proliferation, which might provide novel targets for the development of new therapies.</p>","PeriodicalId":10468,"journal":{"name":"Clinical proteomics","volume":"21 1","pages":"50"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247778/pdf/","citationCount":"0","resultStr":"{\"title\":\"ESF1 and MIPEP proteins promote estrogen receptor-positive breast cancer proliferation and are associated with patient prognosis.\",\"authors\":\"Qing Yu, Chunhua Qu, Jinliang Liang, Peiqi Chen, Kaiying Zhang, Yanji Zhang, Yuening Zhang, Zherui Li, Shaojun Liu, Zhaoshou Yang, Hongyan Sun, Anli Yang\",\"doi\":\"10.1186/s12014-024-09502-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Estrogen receptor-positive (ER+) breast cancer accounts for two-thirds of all breast cancers, and its early and late recurrences still threaten patients' long-term survival and quality of life. Finding candidate tumor antigens and potential therapeutic targets is critical to addressing these unmet needs.</p><p><strong>Method: </strong>The isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis was employed to identify the differentially expressed proteins (DEPs) between ER + breast cancer and corresponding adjacent normal tissue. Candidate DEPs were screened by bioinformatic analyses, and their expression was confirmed by immunohistochemical (IHC) staining and western blot. A series of in vitro experiments, including wound healing assay, colony formation, and cell cycle assay, were performed to reveal the functions of selected DEPs. Additionally, their clinical significances were further analyzed.</p><p><strong>Result: </strong>A total of 369 DEPs (fold change ≥ 2.0 or ≤ 0.66, P < 0.05) were discovered. Compared with normal tissue, 358 proteins were up-regulated and 11 proteins were down-regulated in ER + breast cancer. GO and KEGG enrichment analysis showed that DEPs were closely associated with RNA regulation and metabolic pathways. STRING analysis found ESF1 and MIPEP were the hub genes in breast cancer, whose increased expressions were verified by the IHC staining and western blot. Knocking down ESF1 and MIPEP inhibited colony formation and increased cell apoptosis. Besides, knocking down ESF1 inhibited wound healing but not MIPEP. In addition, ESF1 and MIPEP expression were negatively associated with patient prognosis.</p><p><strong>Conclusion: </strong>The upregulation of ESF1 and MIPEP promoted ER + breast cancer proliferation, which might provide novel targets for the development of new therapies.</p>\",\"PeriodicalId\":10468,\"journal\":{\"name\":\"Clinical proteomics\",\"volume\":\"21 1\",\"pages\":\"50\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247778/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical proteomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12014-024-09502-8\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical proteomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12014-024-09502-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
ESF1 and MIPEP proteins promote estrogen receptor-positive breast cancer proliferation and are associated with patient prognosis.
Background: Estrogen receptor-positive (ER+) breast cancer accounts for two-thirds of all breast cancers, and its early and late recurrences still threaten patients' long-term survival and quality of life. Finding candidate tumor antigens and potential therapeutic targets is critical to addressing these unmet needs.
Method: The isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis was employed to identify the differentially expressed proteins (DEPs) between ER + breast cancer and corresponding adjacent normal tissue. Candidate DEPs were screened by bioinformatic analyses, and their expression was confirmed by immunohistochemical (IHC) staining and western blot. A series of in vitro experiments, including wound healing assay, colony formation, and cell cycle assay, were performed to reveal the functions of selected DEPs. Additionally, their clinical significances were further analyzed.
Result: A total of 369 DEPs (fold change ≥ 2.0 or ≤ 0.66, P < 0.05) were discovered. Compared with normal tissue, 358 proteins were up-regulated and 11 proteins were down-regulated in ER + breast cancer. GO and KEGG enrichment analysis showed that DEPs were closely associated with RNA regulation and metabolic pathways. STRING analysis found ESF1 and MIPEP were the hub genes in breast cancer, whose increased expressions were verified by the IHC staining and western blot. Knocking down ESF1 and MIPEP inhibited colony formation and increased cell apoptosis. Besides, knocking down ESF1 inhibited wound healing but not MIPEP. In addition, ESF1 and MIPEP expression were negatively associated with patient prognosis.
Conclusion: The upregulation of ESF1 and MIPEP promoted ER + breast cancer proliferation, which might provide novel targets for the development of new therapies.
期刊介绍:
Clinical Proteomics encompasses all aspects of translational proteomics. Special emphasis will be placed on the application of proteomic technology to all aspects of clinical research and molecular medicine. The journal is committed to rapid scientific review and timely publication of submitted manuscripts.