葡萄糖监测生物传感器的进展:现状、几代技术进步和创新动力。

IF 2.2 4区 医学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arpita Dua, Abhijit Debnath, Kunal Kumar, Rupa Mazumder, Avijit Mazumder, Rajesh Singh, Saloni Mangal, Jahanvi Sanchitra, Fahad Khan, Soumya Tripathi, Sukriti Vishwas, Hema Chaudhary, Parul Sharma, Shikha Srivastava
{"title":"葡萄糖监测生物传感器的进展:现状、几代技术进步和创新动力。","authors":"Arpita Dua, Abhijit Debnath, Kunal Kumar, Rupa Mazumder, Avijit Mazumder, Rajesh Singh, Saloni Mangal, Jahanvi Sanchitra, Fahad Khan, Soumya Tripathi, Sukriti Vishwas, Hema Chaudhary, Parul Sharma, Shikha Srivastava","doi":"10.2174/0113892010305386240625072535","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose monitoring is essential for managing diabetes, and continuous glucose monitoring biosensors can offer real-time monitoring with little invasiveness. However, challenges remain in improving sensor accuracy, selectivity, and overall performance. This article aims to review current trends and recent advancements in glucose-monitoring biosensors while evaluating their benefits and limitations for diabetes monitoring. An analysis of current literature on transdermal glucose sensors was conducted, focusing on detection techniques, novel nanomaterials, and integrated sensor systems. Recent research has led to advancements in electrochemical, optical, electromagnetic, and sonochemical sensors for transdermal glucose detection. The use of novel nanomaterials and integrated sensor designs has improved sensitivity, selectivity, and accuracy. However, issues like calibration requirements, motion artifacts, and skin irritation persist. Transdermal glucose sensors show promise for non-invasive, convenient diabetes monitoring but require further enhancements to address limitations in accuracy, reliability, and biocompatibility. Continued research and innovation focusing on sensor materials, designs, and surface chemistry is needed to optimize biosensor performance and utility. The study offers a comprehensive analysis of the present status of technological advancement and highlights areas that need more research.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements of Glucose Monitoring Biosensor: Current State, Generations of Technological Progress, and Innovation Dynamics.\",\"authors\":\"Arpita Dua, Abhijit Debnath, Kunal Kumar, Rupa Mazumder, Avijit Mazumder, Rajesh Singh, Saloni Mangal, Jahanvi Sanchitra, Fahad Khan, Soumya Tripathi, Sukriti Vishwas, Hema Chaudhary, Parul Sharma, Shikha Srivastava\",\"doi\":\"10.2174/0113892010305386240625072535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucose monitoring is essential for managing diabetes, and continuous glucose monitoring biosensors can offer real-time monitoring with little invasiveness. However, challenges remain in improving sensor accuracy, selectivity, and overall performance. This article aims to review current trends and recent advancements in glucose-monitoring biosensors while evaluating their benefits and limitations for diabetes monitoring. An analysis of current literature on transdermal glucose sensors was conducted, focusing on detection techniques, novel nanomaterials, and integrated sensor systems. Recent research has led to advancements in electrochemical, optical, electromagnetic, and sonochemical sensors for transdermal glucose detection. The use of novel nanomaterials and integrated sensor designs has improved sensitivity, selectivity, and accuracy. However, issues like calibration requirements, motion artifacts, and skin irritation persist. Transdermal glucose sensors show promise for non-invasive, convenient diabetes monitoring but require further enhancements to address limitations in accuracy, reliability, and biocompatibility. Continued research and innovation focusing on sensor materials, designs, and surface chemistry is needed to optimize biosensor performance and utility. The study offers a comprehensive analysis of the present status of technological advancement and highlights areas that need more research.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010305386240625072535\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010305386240625072535","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

葡萄糖监测对控制糖尿病至关重要,而连续葡萄糖监测生物传感器可以提供实时监测,且几乎没有侵入性。然而,在提高传感器的准确性、选择性和整体性能方面仍然存在挑战。本文旨在回顾葡萄糖监测生物传感器的当前趋势和最新进展,同时评估其在糖尿病监测方面的优势和局限性。文章分析了当前有关透皮葡萄糖传感器的文献,重点关注检测技术、新型纳米材料和集成传感器系统。最近的研究推动了用于透皮葡萄糖检测的电化学、光学、电磁和声化学传感器的发展。新型纳米材料和集成传感器设计的使用提高了灵敏度、选择性和准确性。然而,校准要求、运动伪影和皮肤刺激等问题依然存在。透皮葡萄糖传感器有望实现无创、便捷的糖尿病监测,但还需要进一步改进,以解决在准确性、可靠性和生物相容性方面的局限性。为了优化生物传感器的性能和用途,需要继续开展以传感器材料、设计和表面化学为重点的研究和创新。该研究全面分析了技术进步的现状,并强调了需要进一步研究的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancements of Glucose Monitoring Biosensor: Current State, Generations of Technological Progress, and Innovation Dynamics.

Glucose monitoring is essential for managing diabetes, and continuous glucose monitoring biosensors can offer real-time monitoring with little invasiveness. However, challenges remain in improving sensor accuracy, selectivity, and overall performance. This article aims to review current trends and recent advancements in glucose-monitoring biosensors while evaluating their benefits and limitations for diabetes monitoring. An analysis of current literature on transdermal glucose sensors was conducted, focusing on detection techniques, novel nanomaterials, and integrated sensor systems. Recent research has led to advancements in electrochemical, optical, electromagnetic, and sonochemical sensors for transdermal glucose detection. The use of novel nanomaterials and integrated sensor designs has improved sensitivity, selectivity, and accuracy. However, issues like calibration requirements, motion artifacts, and skin irritation persist. Transdermal glucose sensors show promise for non-invasive, convenient diabetes monitoring but require further enhancements to address limitations in accuracy, reliability, and biocompatibility. Continued research and innovation focusing on sensor materials, designs, and surface chemistry is needed to optimize biosensor performance and utility. The study offers a comprehensive analysis of the present status of technological advancement and highlights areas that need more research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current pharmaceutical biotechnology
Current pharmaceutical biotechnology 医学-生化与分子生物学
CiteScore
5.60
自引率
3.60%
发文量
203
审稿时长
6 months
期刊介绍: Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include: DNA/protein engineering and processing Synthetic biotechnology Omics (genomics, proteomics, metabolomics and systems biology) Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes) Drug delivery and targeting Nanobiotechnology Molecular pharmaceutics and molecular pharmacology Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes) Pharmacokinetics and pharmacodynamics Applied Microbiology Bioinformatics (computational biopharmaceutics and modeling) Environmental biotechnology Regenerative medicine (stem cells, tissue engineering and biomaterials) Translational immunology (cell therapies, antibody engineering, xenotransplantation) Industrial bioprocesses for drug production and development Biosafety Biotech ethics Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome. Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信