综合分析不同 m6A 修饰和表达的 lncRNA,用于冠状动脉疾病的生物标记物鉴定。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rongli Jiang, Qiaowei Jia, Chengcheng Li, Xiongkang Gan, Yaqing Zhou, Yang Pan, Yahong Fu, Xiumei Chen, Lanyu Liang, Enzhi Jia
{"title":"综合分析不同 m6A 修饰和表达的 lncRNA,用于冠状动脉疾病的生物标记物鉴定。","authors":"Rongli Jiang,&nbsp;Qiaowei Jia,&nbsp;Chengcheng Li,&nbsp;Xiongkang Gan,&nbsp;Yaqing Zhou,&nbsp;Yang Pan,&nbsp;Yahong Fu,&nbsp;Xiumei Chen,&nbsp;Lanyu Liang,&nbsp;Enzhi Jia","doi":"10.1002/cbin.12224","DOIUrl":null,"url":null,"abstract":"<p>N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of <i>uc003pes.1</i>, <i>ENST00000422847</i>, and <i>NR_110155</i> were significantly associated with CAD, with <i>uc003pes.1</i> identified as an independent risk factor and <i>NR_110155</i> as an independent protective factor for CAD. <i>NR_110155</i> and <i>uc003pes.1</i> in PBMCs have the potential to serve as biomarkers for predicting CAD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12224","citationCount":"0","resultStr":"{\"title\":\"Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease\",\"authors\":\"Rongli Jiang,&nbsp;Qiaowei Jia,&nbsp;Chengcheng Li,&nbsp;Xiongkang Gan,&nbsp;Yaqing Zhou,&nbsp;Yang Pan,&nbsp;Yahong Fu,&nbsp;Xiumei Chen,&nbsp;Lanyu Liang,&nbsp;Enzhi Jia\",\"doi\":\"10.1002/cbin.12224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of <i>uc003pes.1</i>, <i>ENST00000422847</i>, and <i>NR_110155</i> were significantly associated with CAD, with <i>uc003pes.1</i> identified as an independent risk factor and <i>NR_110155</i> as an independent protective factor for CAD. <i>NR_110155</i> and <i>uc003pes.1</i> in PBMCs have the potential to serve as biomarkers for predicting CAD.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cbin.12224\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12224\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbin.12224","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

N6-甲基腺苷(m6A)是哺乳动物体内最常见的内部 RNA 修饰。然而,有关 m6A 在冠状动脉疾病(CAD)中的作用的研究还很有限。我们通过甲基化 RNA 免疫沉淀测序和 RNA 测序,获得了暴露于氧化低密度脂蛋白处理或未暴露于氧化低密度脂蛋白处理的人冠状动脉平滑肌细胞中 m6A 修饰的长非编码 RNA(lncRNA)的全基因组图谱,并利用基因本体和京都基因和基因组百科全书分析探讨了表达图谱的特征。在外周血单核细胞(PBMC)中评估了所选的七个lncRNA对CAD的预测作用。经 m6A 修饰和表达的 lncRNAs 相关基因主要富集在小 GTPase 介导的信号转导、ErbB 信号转导和 Rap1 信号转导中。此外,uc003pes.1、ENST00000422847 和 NR_110155 的表达水平与 CAD 显著相关,其中 uc003pes.1 被确定为 CAD 的独立危险因素,而 NR_110155 则被确定为 CAD 的独立保护因素。PBMCs中的NR_110155和uc003pes.1有可能成为预测CAD的生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease

Integrated analysis of differentially m6A modified and expressed lncRNAs for biomarker identification in coronary artery disease

N6-methyladenosine (m6A) is the most prevalent internal RNA modification in mammals. However, limited research has been conducted on the role of m6A in coronary artery disease (CAD). We conducted methylated RNA immunoprecipitation sequencing and RNA sequencing to obtain a genome-wide profile of m6A-modified long noncoding RNAs (lncRNAs) in human coronary artery smooth muscle cells either exposed to oxidized low-density lipoprotein treatment or not, and the characteristics of the expression profiles were explored using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The predictive effects of seven selected lncRNAs on CAD were evaluated in peripheral blood mononuclear cells (PBMCs). The differentially m6A-modified and expressed lncRNAs related genes were predominantly enriched in small GTPase-mediated signal transduction, ErbB signaling, and Rap1 signaling. Additionally, the expression levels of uc003pes.1, ENST00000422847, and NR_110155 were significantly associated with CAD, with uc003pes.1 identified as an independent risk factor and NR_110155 as an independent protective factor for CAD. NR_110155 and uc003pes.1 in PBMCs have the potential to serve as biomarkers for predicting CAD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信