PathGPS:利用 GWAS 摘要数据发现共享遗传结构。

IF 1.4 4区 数学 Q3 BIOLOGY
Biometrics Pub Date : 2024-07-01 DOI:10.1093/biomtc/ujae060
Zijun Gao, Qingyuan Zhao, Trevor Hastie
{"title":"PathGPS:利用 GWAS 摘要数据发现共享遗传结构。","authors":"Zijun Gao, Qingyuan Zhao, Trevor Hastie","doi":"10.1093/biomtc/ujae060","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing availability and scale of biobanks and \"omic\" datasets bring new horizons for understanding biological mechanisms. PathGPS is an exploratory data analysis tool to discover genetic architectures using Genome Wide Association Studies (GWAS) summary data. PathGPS is based on a linear structural equation model where traits are regulated by both genetic and environmental pathways. PathGPS decouples the genetic and environmental components by contrasting the GWAS associations of \"signal\" genes with those of \"noise\" genes. From the estimated genetic component, PathGPS then extracts genetic pathways via principal component and factor analysis, leveraging the low-rank and sparse properties. In addition, we provide a bootstrap aggregating (\"bagging\") algorithm to improve stability under data perturbation and hyperparameter tuning. When applied to a metabolomics dataset and the UK Biobank, PathGPS confirms several known gene-trait clusters and suggests multiple new hypotheses for future investigations.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247175/pdf/","citationCount":"0","resultStr":"{\"title\":\"PathGPS: discover shared genetic architecture using GWAS summary data.\",\"authors\":\"Zijun Gao, Qingyuan Zhao, Trevor Hastie\",\"doi\":\"10.1093/biomtc/ujae060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The increasing availability and scale of biobanks and \\\"omic\\\" datasets bring new horizons for understanding biological mechanisms. PathGPS is an exploratory data analysis tool to discover genetic architectures using Genome Wide Association Studies (GWAS) summary data. PathGPS is based on a linear structural equation model where traits are regulated by both genetic and environmental pathways. PathGPS decouples the genetic and environmental components by contrasting the GWAS associations of \\\"signal\\\" genes with those of \\\"noise\\\" genes. From the estimated genetic component, PathGPS then extracts genetic pathways via principal component and factor analysis, leveraging the low-rank and sparse properties. In addition, we provide a bootstrap aggregating (\\\"bagging\\\") algorithm to improve stability under data perturbation and hyperparameter tuning. When applied to a metabolomics dataset and the UK Biobank, PathGPS confirms several known gene-trait clusters and suggests multiple new hypotheses for future investigations.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"80 3\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247175/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujae060\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae060","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物库和 "omic "数据集的可用性和规模不断扩大,为了解生物机制带来了新的视野。PathGPS 是一种探索性数据分析工具,用于利用全基因组关联研究(GWAS)汇总数据发现遗传结构。PathGPS 基于线性结构方程模型,在该模型中,性状同时受遗传和环境途径的调节。PathGPS 通过对比 "信号 "基因与 "噪音 "基因在 GWAS 中的关联,将遗传和环境因素分离开来。然后,PathGPS 利用低秩和稀疏特性,通过主成分和因子分析,从估计的遗传成分中提取遗传途径。此外,我们还提供了一种自举聚合("bagging")算法,以提高数据扰动和超参数调整下的稳定性。当应用到代谢组学数据集和英国生物库时,PathGPS 证实了几个已知的基因性状群,并为未来的研究提出了多个新的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PathGPS: discover shared genetic architecture using GWAS summary data.

The increasing availability and scale of biobanks and "omic" datasets bring new horizons for understanding biological mechanisms. PathGPS is an exploratory data analysis tool to discover genetic architectures using Genome Wide Association Studies (GWAS) summary data. PathGPS is based on a linear structural equation model where traits are regulated by both genetic and environmental pathways. PathGPS decouples the genetic and environmental components by contrasting the GWAS associations of "signal" genes with those of "noise" genes. From the estimated genetic component, PathGPS then extracts genetic pathways via principal component and factor analysis, leveraging the low-rank and sparse properties. In addition, we provide a bootstrap aggregating ("bagging") algorithm to improve stability under data perturbation and hyperparameter tuning. When applied to a metabolomics dataset and the UK Biobank, PathGPS confirms several known gene-trait clusters and suggests multiple new hypotheses for future investigations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信