通过原位诱导相反转实现锌金属电池的高稳定性Hypha-Like核壳纳米结构

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2024-07-14 DOI:10.1002/smll.202403984
Yuanyou Peng, Yihan Fu, Jie Zhang, Guang Liu, Rui Wang, Youzhi Wu, Fen Ran
{"title":"通过原位诱导相反转实现锌金属电池的高稳定性Hypha-Like核壳纳米结构","authors":"Yuanyou Peng,&nbsp;Yihan Fu,&nbsp;Jie Zhang,&nbsp;Guang Liu,&nbsp;Rui Wang,&nbsp;Youzhi Wu,&nbsp;Fen Ran","doi":"10.1002/smll.202403984","DOIUrl":null,"url":null,"abstract":"<p>Nanomaterials are widely used in many fields for their unique physical and chemical properties and especially demonstrate irreplaceability in energy storage systems. In this paper, a novel composite of copper sulfide with hypha-like core-shell nano-structure is synthesized by in situ phase inversion method, which serves as high stability negative electrode materials of zinc-ion batteries (ZIBs). The unique structure facilitates efficient electron and ion transport, enhances the kinetics of electrochemical reactions, and effectively suppresses the undesired expansion and decomposition of transition metal compounds. As a result, the half battery exhibits high specific capacity (250.2 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>), reliable rate performance, and cycle stability (98.3 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> after 500 cycles). Additionally, when assembled with Zn<sub>x</sub>MnO<sub>2</sub> positive to form a full battery, it demonstrates good cycling capacity at an intermediate current density of 2 A g<sup>−1</sup>, while maintaining excellent structural stability over 5,000 cycles (61% retention).</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"20 44","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Stability Hypha-Like Core–Shell Nanostructure by In Situ Induced Phase Inversion for Zinc Metal Batteries\",\"authors\":\"Yuanyou Peng,&nbsp;Yihan Fu,&nbsp;Jie Zhang,&nbsp;Guang Liu,&nbsp;Rui Wang,&nbsp;Youzhi Wu,&nbsp;Fen Ran\",\"doi\":\"10.1002/smll.202403984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nanomaterials are widely used in many fields for their unique physical and chemical properties and especially demonstrate irreplaceability in energy storage systems. In this paper, a novel composite of copper sulfide with hypha-like core-shell nano-structure is synthesized by in situ phase inversion method, which serves as high stability negative electrode materials of zinc-ion batteries (ZIBs). The unique structure facilitates efficient electron and ion transport, enhances the kinetics of electrochemical reactions, and effectively suppresses the undesired expansion and decomposition of transition metal compounds. As a result, the half battery exhibits high specific capacity (250.2 mAh g<sup>−1</sup> at 0.1 A g<sup>−1</sup>), reliable rate performance, and cycle stability (98.3 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> after 500 cycles). Additionally, when assembled with Zn<sub>x</sub>MnO<sub>2</sub> positive to form a full battery, it demonstrates good cycling capacity at an intermediate current density of 2 A g<sup>−1</sup>, while maintaining excellent structural stability over 5,000 cycles (61% retention).</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"20 44\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202403984\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202403984","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

纳米材料以其独特的物理和化学性质被广泛应用于多个领域,尤其在储能系统中具有不可替代的作用。本文采用原位相反转法合成了一种新型硫化铜芯壳纳米结构复合材料,可作为锌离子电池(ZIB)的高稳定性负极材料。这种独特的结构有利于电子和离子的高效传输,提高了电化学反应的动力学性能,并有效抑制了过渡金属化合物的不良膨胀和分解。因此,这种半电池具有高比容量(0.1 A g-1 时为 250.2 mAh g-1)、可靠的速率性能和循环稳定性(500 次循环后,1 A g-1 时为 98.3 mAh g-1)。此外,当与 ZnxMnO2 正极组装成完整电池时,它在 2 A g-1 的中间电流密度下表现出良好的循环容量,同时在 5,000 次循环后保持了出色的结构稳定性(61% 的保持率)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High Stability Hypha-Like Core–Shell Nanostructure by In Situ Induced Phase Inversion for Zinc Metal Batteries

High Stability Hypha-Like Core–Shell Nanostructure by In Situ Induced Phase Inversion for Zinc Metal Batteries

Nanomaterials are widely used in many fields for their unique physical and chemical properties and especially demonstrate irreplaceability in energy storage systems. In this paper, a novel composite of copper sulfide with hypha-like core-shell nano-structure is synthesized by in situ phase inversion method, which serves as high stability negative electrode materials of zinc-ion batteries (ZIBs). The unique structure facilitates efficient electron and ion transport, enhances the kinetics of electrochemical reactions, and effectively suppresses the undesired expansion and decomposition of transition metal compounds. As a result, the half battery exhibits high specific capacity (250.2 mAh g−1 at 0.1 A g−1), reliable rate performance, and cycle stability (98.3 mAh g−1 at 1 A g−1 after 500 cycles). Additionally, when assembled with ZnxMnO2 positive to form a full battery, it demonstrates good cycling capacity at an intermediate current density of 2 A g−1, while maintaining excellent structural stability over 5,000 cycles (61% retention).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信