通过制造抑制穿梭效应的双层功能化分离器,实现高效的锚定-转换界面。

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2024-10-07 Epub Date: 2024-09-06 DOI:10.1002/anie.202407042
Junan Feng, Chaoyue Zhang, Wendong Liu, Shunxian Yu, Lei Wang, Tianyi Wang, Chuan Shi, Xiaoxian Zhao, Shuangqiang Chen, Shulei Chou, Jianjun Song
{"title":"通过制造抑制穿梭效应的双层功能化分离器,实现高效的锚定-转换界面。","authors":"Junan Feng, Chaoyue Zhang, Wendong Liu, Shunxian Yu, Lei Wang, Tianyi Wang, Chuan Shi, Xiaoxian Zhao, Shuangqiang Chen, Shulei Chou, Jianjun Song","doi":"10.1002/anie.202407042","DOIUrl":null,"url":null,"abstract":"<p><p>Lithium-sulfur batteries (LiSBs) with high energy density still face challenges on sluggish conversion kinetics, severe shuttle effects of lithium polysulfides (LiPSs), and low blocking feature of ordinary separators to LiPSs. To tackle these, a novel double-layer strategy to functionalize separators is proposed, which consists of Co with atomically dispersed CoN<sub>4</sub> decorated on Ketjen black (Co/CoN<sub>4</sub>@KB) layer and an ultrathin 2D Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene layer. The theoretical calculations and experimental results jointly demonstrate metallic Co sites provide efficient adsorption and catalytic capability for long-chain LiPSs, while CoN<sub>4</sub> active sites facilitate the absorption of short-chain LiPSs and promote the conversion to Li<sub>2</sub>S. The stacking MXene layer serves as a microscopic barrier to further physically block and chemically anchor the leaked LiPSs from the pores and gaps of the Co/CoN<sub>4</sub>@KB layer, thus preserving LiPSs within efficient anchoring-conversion reaction interfaces to balance the accumulation of \"dead S\" and Li<sub>2</sub>S. Consequently, with an ultralight loading of Co/CoN<sub>4</sub>@KB-MXene, the LiSBs exhibit amazing electrochemical performance even under high sulfur loading and lean electrolyte, and the outperforming performance for lithium-selenium batteries (LiSeBs) can also be achieved. This work exploits a universal and effective strategy of a double-layer functionalized separator to regulate the equilibrium adsorption-catalytic interface, enabling high-energy and long-cycle LiSBs/LiSeBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enabling Efficient Anchoring-Conversion Interface by Fabricating Double-Layer Functionalized Separator for Suppressing Shuttle Effect.\",\"authors\":\"Junan Feng, Chaoyue Zhang, Wendong Liu, Shunxian Yu, Lei Wang, Tianyi Wang, Chuan Shi, Xiaoxian Zhao, Shuangqiang Chen, Shulei Chou, Jianjun Song\",\"doi\":\"10.1002/anie.202407042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lithium-sulfur batteries (LiSBs) with high energy density still face challenges on sluggish conversion kinetics, severe shuttle effects of lithium polysulfides (LiPSs), and low blocking feature of ordinary separators to LiPSs. To tackle these, a novel double-layer strategy to functionalize separators is proposed, which consists of Co with atomically dispersed CoN<sub>4</sub> decorated on Ketjen black (Co/CoN<sub>4</sub>@KB) layer and an ultrathin 2D Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene layer. The theoretical calculations and experimental results jointly demonstrate metallic Co sites provide efficient adsorption and catalytic capability for long-chain LiPSs, while CoN<sub>4</sub> active sites facilitate the absorption of short-chain LiPSs and promote the conversion to Li<sub>2</sub>S. The stacking MXene layer serves as a microscopic barrier to further physically block and chemically anchor the leaked LiPSs from the pores and gaps of the Co/CoN<sub>4</sub>@KB layer, thus preserving LiPSs within efficient anchoring-conversion reaction interfaces to balance the accumulation of \\\"dead S\\\" and Li<sub>2</sub>S. Consequently, with an ultralight loading of Co/CoN<sub>4</sub>@KB-MXene, the LiSBs exhibit amazing electrochemical performance even under high sulfur loading and lean electrolyte, and the outperforming performance for lithium-selenium batteries (LiSeBs) can also be achieved. This work exploits a universal and effective strategy of a double-layer functionalized separator to regulate the equilibrium adsorption-catalytic interface, enabling high-energy and long-cycle LiSBs/LiSeBs.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202407042\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202407042","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高能量密度的锂硫电池(LiSBs)仍然面临着转化动力学缓慢、多硫化锂(LiPSs)的穿梭效应严重以及普通隔膜对多硫化锂的阻隔性低等挑战。为了解决这些问题,我们提出了一种新颖的双层隔膜功能化策略,它由原子分散的 CoN4 装饰在 Ketjen 黑(Co/CoN4@KB)层和超薄二维 Ti3C2Tx MXene 层组成。理论计算和实验结果共同证明了金属 Co 位点对长链锂离子具有高效的吸附和催化能力,而 CoN4 活性位点则有利于短链锂离子的吸附并促进其转化为 Li2S。堆叠的 MXene 层可作为微观屏障,进一步物理阻挡和化学锚定从 Co/CoN4@KB 层的孔隙和间隙中泄漏的 LiPS,从而将 LiPS 保存在有效的锚定-转化反应界面中,以平衡 "死 S "和 Li2S 的积累。因此,在超轻的 Co/CoN4@KB-MXene 负载下,即使在高硫负荷和贫电解质条件下,锂硒电池也能表现出惊人的电化学性能,并可实现优于锂硒电池的性能。这项研究利用双层功能化隔膜这一普遍而有效的策略来调节平衡吸附-催化界面,从而实现了高能量和长周期的锂电池/锂硒电池。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enabling Efficient Anchoring-Conversion Interface by Fabricating Double-Layer Functionalized Separator for Suppressing Shuttle Effect.

Lithium-sulfur batteries (LiSBs) with high energy density still face challenges on sluggish conversion kinetics, severe shuttle effects of lithium polysulfides (LiPSs), and low blocking feature of ordinary separators to LiPSs. To tackle these, a novel double-layer strategy to functionalize separators is proposed, which consists of Co with atomically dispersed CoN4 decorated on Ketjen black (Co/CoN4@KB) layer and an ultrathin 2D Ti3C2Tx MXene layer. The theoretical calculations and experimental results jointly demonstrate metallic Co sites provide efficient adsorption and catalytic capability for long-chain LiPSs, while CoN4 active sites facilitate the absorption of short-chain LiPSs and promote the conversion to Li2S. The stacking MXene layer serves as a microscopic barrier to further physically block and chemically anchor the leaked LiPSs from the pores and gaps of the Co/CoN4@KB layer, thus preserving LiPSs within efficient anchoring-conversion reaction interfaces to balance the accumulation of "dead S" and Li2S. Consequently, with an ultralight loading of Co/CoN4@KB-MXene, the LiSBs exhibit amazing electrochemical performance even under high sulfur loading and lean electrolyte, and the outperforming performance for lithium-selenium batteries (LiSeBs) can also be achieved. This work exploits a universal and effective strategy of a double-layer functionalized separator to regulate the equilibrium adsorption-catalytic interface, enabling high-energy and long-cycle LiSBs/LiSeBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信