通过阴离子空位与碳点耦合优化固体聚合物电解质的微环境

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Angewandte Chemie International Edition Pub Date : 2024-10-07 Epub Date: 2024-09-05 DOI:10.1002/anie.202409044
Huaxin Liu, Yu Ye, Fangjun Zhu, Xue Zhong, Dingzhong Luo, Yi Zhang, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji
{"title":"通过阴离子空位与碳点耦合优化固体聚合物电解质的微环境","authors":"Huaxin Liu, Yu Ye, Fangjun Zhu, Xue Zhong, Dingzhong Luo, Yi Zhang, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji","doi":"10.1002/anie.202409044","DOIUrl":null,"url":null,"abstract":"<p><p>The practical application of solid polymer electrolyte is hindered by the small transference number of Li<sup>+</sup>, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li<sup>+</sup> in the electrolyte. Therefore, flower-like SnS<sub>2</sub>-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS<sub>2</sub> have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in situ formed Li<sub>2</sub>S/Li<sub>3</sub>N at the interface of Li metal and electrolyte facilitate the fast Li<sup>+</sup> diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing the Microenvironment in Solid Polymer Electrolytes by Anion Vacancy Coupled with Carbon Dots.\",\"authors\":\"Huaxin Liu, Yu Ye, Fangjun Zhu, Xue Zhong, Dingzhong Luo, Yi Zhang, Wentao Deng, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji\",\"doi\":\"10.1002/anie.202409044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The practical application of solid polymer electrolyte is hindered by the small transference number of Li<sup>+</sup>, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li<sup>+</sup> in the electrolyte. Therefore, flower-like SnS<sub>2</sub>-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS<sub>2</sub> have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in situ formed Li<sub>2</sub>S/Li<sub>3</sub>N at the interface of Li metal and electrolyte facilitate the fast Li<sup>+</sup> diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202409044\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202409044","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于聚合物电解质中的微环境严重决定了 Li+ 的转移数小、离子电导率低和界面稳定性差,因此阻碍了固体聚合物电解质的实际应用。引入功能填料是解决这些问题的有效方法。在这项工作中,基于密度泛函理论(DFT)计算,证明了填料的阴离子空位可以锚定锂盐的阴离子,从而显著增加电解质中 Li+ 的转移数。因此,在功能化碳点(CD)的调控下,制备出了具有丰富硫空位的花状 SnS2 基填料。值得一提的是,点缀在 SnS2 表面的 CD 具有丰富的有机官能团,可作为架桥剂增强填料与聚合物的相容性,从而获得优异的机械性能和快速离子传输途径。此外,在锂金属和电解质界面上原位形成的 Li2S/Li3N 有助于 Li+ 的快速扩散和锂的均匀沉积,有效地减少了锂枝晶的生长。因此,组装后的锂金属电池表现出优异的循环稳定性,体现了碳点衍生的富空位无机填料改性策略的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing the Microenvironment in Solid Polymer Electrolytes by Anion Vacancy Coupled with Carbon Dots.

The practical application of solid polymer electrolyte is hindered by the small transference number of Li+, low ionic conductivity and poor interfacial stability, which are seriously determined by the microenvironment in polymer electrolyte. The introduction of functional fillers is an effective solution to these problems. In this work, based on density functional theory (DFT) calculations, it is demonstrated that the anion vacancy of filler can anchor anions of lithium salt, thereby significantly increasing the transference number of Li+ in the electrolyte. Therefore, flower-like SnS2-based filler with abundant sulfur vacancies is prepared under the regulation of functionalized carbon dots (CDs). It is worth mentioning that the CDs dotted on the surface of SnS2 have rich organic functional groups, which can serve as the bridging agent to enhance the compatibility of filler and polymer, leading to superior mechanical performance and fast ion transport pathway. Additionally, the in situ formed Li2S/Li3N at the interface of Li metal and electrolyte facilitate the fast Li+ diffusion and uniform Li deposition, effectively mitigating the growth of lithium dendrites. As a result, the assembled lithium metal batteries exhibit excellent cycling stability, reflecting the superiority of the carbon dots derived vacancy-rich inorganic filler modification strategy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信