通过特定位点和正交共价固定蛋白质定制生物活性纸。

IF 5.4 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ingo Bork, Carolin S. Dombrowsky, Sebastian Bitsch, Dominic Happel, Felix K. Geyer, Olga Avrutina, Harald Kolmar
{"title":"通过特定位点和正交共价固定蛋白质定制生物活性纸。","authors":"Ingo Bork,&nbsp;Carolin S. Dombrowsky,&nbsp;Sebastian Bitsch,&nbsp;Dominic Happel,&nbsp;Felix K. Geyer,&nbsp;Olga Avrutina,&nbsp;Harald Kolmar","doi":"10.1021/acs.biomac.4c00724","DOIUrl":null,"url":null,"abstract":"<div><p>A strategy for the bioorthogonal immobilization of proteins onto commercially available filter paper is presented. Recently, a two-step approach has been described that relies on covalent immobilization of a linker molecule to paper, followed by enzyme-mediated conjugation of a protein of interest containing an enzyme-recognition tag. Here, this strategy was expanded by evaluating four different chemical and chemoenzymatic reactions and investigating paper loading efficiency and orthogonality. Enhanced green fluorescent protein (EGFP) was used as a model protein to allow quantification of protein loading via fluorescence imaging. Two approaches were identified that showed significantly increased loading efficiencies compared with the previously applied conjugation strategy. Additionally, all four methods were proven orthogonal to each other, allowing simultaneous immobilization of a mixture of proteins to a premodified assembly of two paper sheets.</p></div><div><p><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (68KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></p></div>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":"25 8","pages":"Pages 5300-5309"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailor-Made Bioactive Papers by Site-Specific and Orthogonal Covalent Immobilization of Proteins\",\"authors\":\"Ingo Bork,&nbsp;Carolin S. Dombrowsky,&nbsp;Sebastian Bitsch,&nbsp;Dominic Happel,&nbsp;Felix K. Geyer,&nbsp;Olga Avrutina,&nbsp;Harald Kolmar\",\"doi\":\"10.1021/acs.biomac.4c00724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A strategy for the bioorthogonal immobilization of proteins onto commercially available filter paper is presented. Recently, a two-step approach has been described that relies on covalent immobilization of a linker molecule to paper, followed by enzyme-mediated conjugation of a protein of interest containing an enzyme-recognition tag. Here, this strategy was expanded by evaluating four different chemical and chemoenzymatic reactions and investigating paper loading efficiency and orthogonality. Enhanced green fluorescent protein (EGFP) was used as a model protein to allow quantification of protein loading via fluorescence imaging. Two approaches were identified that showed significantly increased loading efficiencies compared with the previously applied conjugation strategy. Additionally, all four methods were proven orthogonal to each other, allowing simultaneous immobilization of a mixture of proteins to a premodified assembly of two paper sheets.</p></div><div><p><span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (68KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></p></div>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\"25 8\",\"pages\":\"Pages 5300-5309\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1525779724004276\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1525779724004276","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种将蛋白质生物正交固定到市售滤纸上的策略。最近,有人介绍了一种两步法,即先将连接分子共价固定到滤纸上,然后通过酶介导将含有酶识别标签的相关蛋白质连接到滤纸上。在此,通过评估四种不同的化学和化学酶反应,并研究纸张负载效率和正交性,对这一策略进行了扩展。增强型绿色荧光蛋白(EGFP)被用作模型蛋白,以便通过荧光成像对蛋白负载进行量化。与之前使用的共轭策略相比,有两种方法的负载效率明显提高。此外,所有四种方法都被证明是相互正交的,可以同时将蛋白质混合物固定到两张纸片的预修饰组件上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tailor-Made Bioactive Papers by Site-Specific and Orthogonal Covalent Immobilization of Proteins

Tailor-Made Bioactive Papers by Site-Specific and Orthogonal Covalent Immobilization of Proteins

A strategy for the bioorthogonal immobilization of proteins onto commercially available filter paper is presented. Recently, a two-step approach has been described that relies on covalent immobilization of a linker molecule to paper, followed by enzyme-mediated conjugation of a protein of interest containing an enzyme-recognition tag. Here, this strategy was expanded by evaluating four different chemical and chemoenzymatic reactions and investigating paper loading efficiency and orthogonality. Enhanced green fluorescent protein (EGFP) was used as a model protein to allow quantification of protein loading via fluorescence imaging. Two approaches were identified that showed significantly increased loading efficiencies compared with the previously applied conjugation strategy. Additionally, all four methods were proven orthogonal to each other, allowing simultaneous immobilization of a mixture of proteins to a premodified assembly of two paper sheets.

  1. Download: Download high-res image (68KB)
  2. Download: Download full-size image

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信