{"title":"用于 4-甲氧基苄醇有氧氧化的改性 MXene 上的铈纳米粒子","authors":"Deqiong Xie, Kecan Dou, Jiale Huang, Wenqian Zhai, Jing Shi, Lei Zhuang, Weidong Zhu, Fumin Zhang","doi":"10.1021/acsanm.4c02758","DOIUrl":null,"url":null,"abstract":"The development of efficient and robust metal nanoparticle catalysts for the aerobic oxidation of benzyl alcohol is crucial for advancing green chemistry. This study presents a class of ceria nanoparticle catalysts, designated as Ce-NC/CFMX-T, where “T” denotes the pyrolysis temperature. These catalysts are synthesized by pyrolyzing a mixture of Ce-MOF-801/CFMX and dicyandiamide at high temperatures, aimed at the liquid-phase aerobic oxidation of 4-methoxybenzyl alcohol to 4-methoxybenzaldehyde, using molecular oxygen as the oxidizing agent and avoiding harmful additives or bases. Among the synthesized catalysts, Ce-NC/CFMX-973 exhibited exceptional catalytic efficiency, achieving over 99.9% conversion of 4-methoxybenzyl alcohol and complete selectivity for 4-methoxybenzaldehyde. This performance was achieved under moderate conditions, using xylene as the solvent at 373 K over 8 h and an oxygen pressure of 1 atm. Kinetic analysis revealed that the activation energy for oxidizing 4-methoxybenzyl alcohol using Ce-NC/CFMX-973 was 68.5 ± 3.0 kJ/mol, which is lower than the values observed for Ce-C/CFMX-973, Ce-NC-973, and Ce-C-973. The remarkable catalytic performance of the Ce-NC/CFMX-973 catalyst is attributed to the synergistic effects between CeO<sub>2</sub> nanoparticles and oxygen vacancies, along with the support’s balanced acidity and basicity properties.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"19 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ceria Nanoparticles on Modified MXene for Aerobic Oxidation of 4-Methoxybenzyl Alcohol\",\"authors\":\"Deqiong Xie, Kecan Dou, Jiale Huang, Wenqian Zhai, Jing Shi, Lei Zhuang, Weidong Zhu, Fumin Zhang\",\"doi\":\"10.1021/acsanm.4c02758\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of efficient and robust metal nanoparticle catalysts for the aerobic oxidation of benzyl alcohol is crucial for advancing green chemistry. This study presents a class of ceria nanoparticle catalysts, designated as Ce-NC/CFMX-T, where “T” denotes the pyrolysis temperature. These catalysts are synthesized by pyrolyzing a mixture of Ce-MOF-801/CFMX and dicyandiamide at high temperatures, aimed at the liquid-phase aerobic oxidation of 4-methoxybenzyl alcohol to 4-methoxybenzaldehyde, using molecular oxygen as the oxidizing agent and avoiding harmful additives or bases. Among the synthesized catalysts, Ce-NC/CFMX-973 exhibited exceptional catalytic efficiency, achieving over 99.9% conversion of 4-methoxybenzyl alcohol and complete selectivity for 4-methoxybenzaldehyde. This performance was achieved under moderate conditions, using xylene as the solvent at 373 K over 8 h and an oxygen pressure of 1 atm. Kinetic analysis revealed that the activation energy for oxidizing 4-methoxybenzyl alcohol using Ce-NC/CFMX-973 was 68.5 ± 3.0 kJ/mol, which is lower than the values observed for Ce-C/CFMX-973, Ce-NC-973, and Ce-C-973. The remarkable catalytic performance of the Ce-NC/CFMX-973 catalyst is attributed to the synergistic effects between CeO<sub>2</sub> nanoparticles and oxygen vacancies, along with the support’s balanced acidity and basicity properties.\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsanm.4c02758\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c02758","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Ceria Nanoparticles on Modified MXene for Aerobic Oxidation of 4-Methoxybenzyl Alcohol
The development of efficient and robust metal nanoparticle catalysts for the aerobic oxidation of benzyl alcohol is crucial for advancing green chemistry. This study presents a class of ceria nanoparticle catalysts, designated as Ce-NC/CFMX-T, where “T” denotes the pyrolysis temperature. These catalysts are synthesized by pyrolyzing a mixture of Ce-MOF-801/CFMX and dicyandiamide at high temperatures, aimed at the liquid-phase aerobic oxidation of 4-methoxybenzyl alcohol to 4-methoxybenzaldehyde, using molecular oxygen as the oxidizing agent and avoiding harmful additives or bases. Among the synthesized catalysts, Ce-NC/CFMX-973 exhibited exceptional catalytic efficiency, achieving over 99.9% conversion of 4-methoxybenzyl alcohol and complete selectivity for 4-methoxybenzaldehyde. This performance was achieved under moderate conditions, using xylene as the solvent at 373 K over 8 h and an oxygen pressure of 1 atm. Kinetic analysis revealed that the activation energy for oxidizing 4-methoxybenzyl alcohol using Ce-NC/CFMX-973 was 68.5 ± 3.0 kJ/mol, which is lower than the values observed for Ce-C/CFMX-973, Ce-NC-973, and Ce-C-973. The remarkable catalytic performance of the Ce-NC/CFMX-973 catalyst is attributed to the synergistic effects between CeO2 nanoparticles and oxygen vacancies, along with the support’s balanced acidity and basicity properties.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.