{"title":"块下三角托普利兹系统的预处理 MINRES 方法","authors":"Congcong Li, Xuelei Lin, Sean Hon, Shu-Lin Wu","doi":"10.1007/s10915-024-02611-4","DOIUrl":null,"url":null,"abstract":"<p>In this study, a novel preconditioner based on the absolute-value block <span>\\(\\alpha \\)</span>-circulant matrix approximation is developed, specifically designed for nonsymmetric dense block lower triangular Toeplitz (BLTT) systems that emerge from the numerical discretization of evolutionary equations. Our preconditioner is constructed by taking an absolute-value of a block <span>\\(\\alpha \\)</span>-circulant matrix approximation to the BLTT matrix. To apply our preconditioner, the original BLTT linear system is converted into a symmetric form by applying a time-reversing permutation transformation. Then, with our preconditioner, the preconditioned minimal residual method (MINRES) solver is employed to solve the symmetrized linear system. With properly chosen <span>\\(\\alpha \\)</span>, the eigenvalues of the preconditioned matrix are proven to be clustered around <span>\\(\\pm 1\\)</span> without any significant outliers. With the clustered spectrum, we show that the preconditioned MINRES solver for the preconditioned system has a convergence rate independent of system size. The efficacy of the proposed preconditioner is corroborated by our numerical experiments, which reveal that it attains optimal convergence.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"23 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Preconditioned MINRES Method for Block Lower Triangular Toeplitz Systems\",\"authors\":\"Congcong Li, Xuelei Lin, Sean Hon, Shu-Lin Wu\",\"doi\":\"10.1007/s10915-024-02611-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, a novel preconditioner based on the absolute-value block <span>\\\\(\\\\alpha \\\\)</span>-circulant matrix approximation is developed, specifically designed for nonsymmetric dense block lower triangular Toeplitz (BLTT) systems that emerge from the numerical discretization of evolutionary equations. Our preconditioner is constructed by taking an absolute-value of a block <span>\\\\(\\\\alpha \\\\)</span>-circulant matrix approximation to the BLTT matrix. To apply our preconditioner, the original BLTT linear system is converted into a symmetric form by applying a time-reversing permutation transformation. Then, with our preconditioner, the preconditioned minimal residual method (MINRES) solver is employed to solve the symmetrized linear system. With properly chosen <span>\\\\(\\\\alpha \\\\)</span>, the eigenvalues of the preconditioned matrix are proven to be clustered around <span>\\\\(\\\\pm 1\\\\)</span> without any significant outliers. With the clustered spectrum, we show that the preconditioned MINRES solver for the preconditioned system has a convergence rate independent of system size. The efficacy of the proposed preconditioner is corroborated by our numerical experiments, which reveal that it attains optimal convergence.</p>\",\"PeriodicalId\":50055,\"journal\":{\"name\":\"Journal of Scientific Computing\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Scientific Computing\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10915-024-02611-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-024-02611-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Preconditioned MINRES Method for Block Lower Triangular Toeplitz Systems
In this study, a novel preconditioner based on the absolute-value block \(\alpha \)-circulant matrix approximation is developed, specifically designed for nonsymmetric dense block lower triangular Toeplitz (BLTT) systems that emerge from the numerical discretization of evolutionary equations. Our preconditioner is constructed by taking an absolute-value of a block \(\alpha \)-circulant matrix approximation to the BLTT matrix. To apply our preconditioner, the original BLTT linear system is converted into a symmetric form by applying a time-reversing permutation transformation. Then, with our preconditioner, the preconditioned minimal residual method (MINRES) solver is employed to solve the symmetrized linear system. With properly chosen \(\alpha \), the eigenvalues of the preconditioned matrix are proven to be clustered around \(\pm 1\) without any significant outliers. With the clustered spectrum, we show that the preconditioned MINRES solver for the preconditioned system has a convergence rate independent of system size. The efficacy of the proposed preconditioner is corroborated by our numerical experiments, which reveal that it attains optimal convergence.
期刊介绍:
Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering.
The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.