共挤三层聚乳酸/封装香叶醇/聚乳酸-石墨烯纳米片薄膜的微结构、机械、热流变、阻隔和抗菌性能

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE
Jasim Ahmed, Anibal Bher, Rafael Auras
{"title":"共挤三层聚乳酸/封装香叶醇/聚乳酸-石墨烯纳米片薄膜的微结构、机械、热流变、阻隔和抗菌性能","authors":"Jasim Ahmed, Anibal Bher, Rafael Auras","doi":"10.1002/pat.6488","DOIUrl":null,"url":null,"abstract":"A sustainable polylactide (PLA)‐based multilayer food packaging film was developed to improve neat PLA films' modest mechanical, thermal, and water/gas barrier properties. To improve the desired properties and impart antimicrobial aspects to the composite films, graphene nanoplatelets (GNP), and geraniol (GER) were reinforced into single‐layered PLA films. The project aimed to assemble three monolayers into multilayer films (MLF) through a coextrusion process, keeping the PLA‐GER layer in the core. X‐ray diffractograms, micrographs, and roughness parameters of the films demonstrated the dispersion of GNP in the film. Thermogravimetric analysis confirmed an enhancement in the thermal stability of the MLF by around 8°C when compared against single‐layer PLA films. An improvement in mechanical rigidity was supported by tensile (>87%) and rheological measurements. The polymers exhibit liquid‐like behavior in melts. Barrier properties did not improve for the MLF due to the agglomeration of GNP. The excellent antimicrobial properties of the MLFs for 3 weeks of storage at refrigerated conditions against both gram‐positive and gram‐negative pathogens were attributed to the release of GER from the film into the packed chicken samples and proved their potential for use in the food industry.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":"29 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructural, mechanical, thermo‐rheological, barrier, and antimicrobial properties of coextruded tri‐layer polylactide/encapsulated geraniol/polylactide‐graphene nanoplatelets films\",\"authors\":\"Jasim Ahmed, Anibal Bher, Rafael Auras\",\"doi\":\"10.1002/pat.6488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sustainable polylactide (PLA)‐based multilayer food packaging film was developed to improve neat PLA films' modest mechanical, thermal, and water/gas barrier properties. To improve the desired properties and impart antimicrobial aspects to the composite films, graphene nanoplatelets (GNP), and geraniol (GER) were reinforced into single‐layered PLA films. The project aimed to assemble three monolayers into multilayer films (MLF) through a coextrusion process, keeping the PLA‐GER layer in the core. X‐ray diffractograms, micrographs, and roughness parameters of the films demonstrated the dispersion of GNP in the film. Thermogravimetric analysis confirmed an enhancement in the thermal stability of the MLF by around 8°C when compared against single‐layer PLA films. An improvement in mechanical rigidity was supported by tensile (>87%) and rheological measurements. The polymers exhibit liquid‐like behavior in melts. Barrier properties did not improve for the MLF due to the agglomeration of GNP. The excellent antimicrobial properties of the MLFs for 3 weeks of storage at refrigerated conditions against both gram‐positive and gram‐negative pathogens were attributed to the release of GER from the film into the packed chicken samples and proved their potential for use in the food industry.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6488\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6488","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一种可持续的聚乳酸(PLA)基多层食品包装薄膜,以改善纯聚乳酸薄膜适度的机械、热和水/气体阻隔性能。为了提高复合薄膜的预期性能并赋予其抗菌性,在单层聚乳酸薄膜中添加了石墨烯纳米片(GNP)和香叶醇(GER)。该项目旨在通过共挤工艺将三个单层膜组合成多层膜(MLF),并将聚乳酸-香叶醇层保持在核心位置。薄膜的 X 射线衍射图、显微照片和粗糙度参数显示了 GNP 在薄膜中的分散情况。热重分析证实,与单层聚乳酸薄膜相比,MLF 的热稳定性提高了约 8°C。拉伸(>87%)和流变测量也证明了机械刚性的改善。聚合物在熔体中表现出类似液体的行为。由于 GNP 的聚结,MLF 的阻隔性能没有得到改善。MLF 在冷藏条件下储存 3 周后对革兰氏阳性和革兰氏阴性病原体都具有优异的抗菌性能,这归功于 GER 从薄膜中释放到包装好的鸡肉样品中,并证明了它们在食品工业中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microstructural, mechanical, thermo‐rheological, barrier, and antimicrobial properties of coextruded tri‐layer polylactide/encapsulated geraniol/polylactide‐graphene nanoplatelets films
A sustainable polylactide (PLA)‐based multilayer food packaging film was developed to improve neat PLA films' modest mechanical, thermal, and water/gas barrier properties. To improve the desired properties and impart antimicrobial aspects to the composite films, graphene nanoplatelets (GNP), and geraniol (GER) were reinforced into single‐layered PLA films. The project aimed to assemble three monolayers into multilayer films (MLF) through a coextrusion process, keeping the PLA‐GER layer in the core. X‐ray diffractograms, micrographs, and roughness parameters of the films demonstrated the dispersion of GNP in the film. Thermogravimetric analysis confirmed an enhancement in the thermal stability of the MLF by around 8°C when compared against single‐layer PLA films. An improvement in mechanical rigidity was supported by tensile (>87%) and rheological measurements. The polymers exhibit liquid‐like behavior in melts. Barrier properties did not improve for the MLF due to the agglomeration of GNP. The excellent antimicrobial properties of the MLFs for 3 weeks of storage at refrigerated conditions against both gram‐positive and gram‐negative pathogens were attributed to the release of GER from the film into the packed chicken samples and proved their potential for use in the food industry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信