Katelyn Kiser, Viraj A. Athavale, Laura Bartlett, Mario Buchely, Ronald O’Malley
{"title":"通过共聚焦显微镜观察低碳钢和高合金钢铸件固液界面的生长动力学和发展过程","authors":"Katelyn Kiser, Viraj A. Athavale, Laura Bartlett, Mario Buchely, Ronald O’Malley","doi":"10.1007/s40962-024-01402-9","DOIUrl":null,"url":null,"abstract":"<p>High-Temperature Laser Scanning Confocal Microscopy (HT-LSCM) is an in situ technique that can be used for direct observation of the microstructure during melting, solidification, and solid-state cooling. Therefore, this tool is a powerful method that can be used to understand how cooling conditions affect the solidification structure and degree of alloy segregation in steel castings. In the current study, specimen shape and size were optimized for this technique using an ultra-low-carbon steel. HT-LSCM was then utilized to observe the melting and solidification phenomena as a function of cooling rate for the ultra-low-carbon steel as well as a high-alloy austenitic manganese and aluminum steel. The growth kinetics and evolution of the solid–liquid interface during solidification were derived from time-lapse videos. The resulting solidification microstructure was determined utilizing scanning electron microscopy.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Kinetics and Development of the Solid–Liquid Interface in Low-Carbon and High-Alloy Steel Castings Enabled by Confocal Microscopy\",\"authors\":\"Katelyn Kiser, Viraj A. Athavale, Laura Bartlett, Mario Buchely, Ronald O’Malley\",\"doi\":\"10.1007/s40962-024-01402-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-Temperature Laser Scanning Confocal Microscopy (HT-LSCM) is an in situ technique that can be used for direct observation of the microstructure during melting, solidification, and solid-state cooling. Therefore, this tool is a powerful method that can be used to understand how cooling conditions affect the solidification structure and degree of alloy segregation in steel castings. In the current study, specimen shape and size were optimized for this technique using an ultra-low-carbon steel. HT-LSCM was then utilized to observe the melting and solidification phenomena as a function of cooling rate for the ultra-low-carbon steel as well as a high-alloy austenitic manganese and aluminum steel. The growth kinetics and evolution of the solid–liquid interface during solidification were derived from time-lapse videos. The resulting solidification microstructure was determined utilizing scanning electron microscopy.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01402-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01402-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Growth Kinetics and Development of the Solid–Liquid Interface in Low-Carbon and High-Alloy Steel Castings Enabled by Confocal Microscopy
High-Temperature Laser Scanning Confocal Microscopy (HT-LSCM) is an in situ technique that can be used for direct observation of the microstructure during melting, solidification, and solid-state cooling. Therefore, this tool is a powerful method that can be used to understand how cooling conditions affect the solidification structure and degree of alloy segregation in steel castings. In the current study, specimen shape and size were optimized for this technique using an ultra-low-carbon steel. HT-LSCM was then utilized to observe the melting and solidification phenomena as a function of cooling rate for the ultra-low-carbon steel as well as a high-alloy austenitic manganese and aluminum steel. The growth kinetics and evolution of the solid–liquid interface during solidification were derived from time-lapse videos. The resulting solidification microstructure was determined utilizing scanning electron microscopy.
期刊介绍:
The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).