通过共聚焦显微镜观察低碳钢和高合金钢铸件固液界面的生长动力学和发展过程

IF 2.6 3区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING
Katelyn Kiser, Viraj A. Athavale, Laura Bartlett, Mario Buchely, Ronald O’Malley
{"title":"通过共聚焦显微镜观察低碳钢和高合金钢铸件固液界面的生长动力学和发展过程","authors":"Katelyn Kiser, Viraj A. Athavale, Laura Bartlett, Mario Buchely, Ronald O’Malley","doi":"10.1007/s40962-024-01402-9","DOIUrl":null,"url":null,"abstract":"<p>High-Temperature Laser Scanning Confocal Microscopy (HT-LSCM) is an in situ technique that can be used for direct observation of the microstructure during melting, solidification, and solid-state cooling. Therefore, this tool is a powerful method that can be used to understand how cooling conditions affect the solidification structure and degree of alloy segregation in steel castings. In the current study, specimen shape and size were optimized for this technique using an ultra-low-carbon steel. HT-LSCM was then utilized to observe the melting and solidification phenomena as a function of cooling rate for the ultra-low-carbon steel as well as a high-alloy austenitic manganese and aluminum steel. The growth kinetics and evolution of the solid–liquid interface during solidification were derived from time-lapse videos. The resulting solidification microstructure was determined utilizing scanning electron microscopy.</p>","PeriodicalId":14231,"journal":{"name":"International Journal of Metalcasting","volume":"29 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth Kinetics and Development of the Solid–Liquid Interface in Low-Carbon and High-Alloy Steel Castings Enabled by Confocal Microscopy\",\"authors\":\"Katelyn Kiser, Viraj A. Athavale, Laura Bartlett, Mario Buchely, Ronald O’Malley\",\"doi\":\"10.1007/s40962-024-01402-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-Temperature Laser Scanning Confocal Microscopy (HT-LSCM) is an in situ technique that can be used for direct observation of the microstructure during melting, solidification, and solid-state cooling. Therefore, this tool is a powerful method that can be used to understand how cooling conditions affect the solidification structure and degree of alloy segregation in steel castings. In the current study, specimen shape and size were optimized for this technique using an ultra-low-carbon steel. HT-LSCM was then utilized to observe the melting and solidification phenomena as a function of cooling rate for the ultra-low-carbon steel as well as a high-alloy austenitic manganese and aluminum steel. The growth kinetics and evolution of the solid–liquid interface during solidification were derived from time-lapse videos. The resulting solidification microstructure was determined utilizing scanning electron microscopy.</p>\",\"PeriodicalId\":14231,\"journal\":{\"name\":\"International Journal of Metalcasting\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Metalcasting\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40962-024-01402-9\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Metalcasting","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40962-024-01402-9","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

高温激光扫描共聚焦显微镜 (HT-LSCM) 是一种现场技术,可用于直接观察熔化、凝固和固态冷却过程中的微观结构。因此,该工具是一种强大的方法,可用于了解冷却条件如何影响钢铸件的凝固结构和合金偏析程度。在当前的研究中,使用超低碳钢优化了该技术的试样形状和尺寸。然后利用 HT-LSCM 观察超低碳钢以及高合金奥氏体锰铝钢的熔化和凝固现象与冷却速度的函数关系。通过延时视频得出了凝固过程中固液界面的生长动力学和演变过程。利用扫描电子显微镜确定了由此产生的凝固微观结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Growth Kinetics and Development of the Solid–Liquid Interface in Low-Carbon and High-Alloy Steel Castings Enabled by Confocal Microscopy

Growth Kinetics and Development of the Solid–Liquid Interface in Low-Carbon and High-Alloy Steel Castings Enabled by Confocal Microscopy

High-Temperature Laser Scanning Confocal Microscopy (HT-LSCM) is an in situ technique that can be used for direct observation of the microstructure during melting, solidification, and solid-state cooling. Therefore, this tool is a powerful method that can be used to understand how cooling conditions affect the solidification structure and degree of alloy segregation in steel castings. In the current study, specimen shape and size were optimized for this technique using an ultra-low-carbon steel. HT-LSCM was then utilized to observe the melting and solidification phenomena as a function of cooling rate for the ultra-low-carbon steel as well as a high-alloy austenitic manganese and aluminum steel. The growth kinetics and evolution of the solid–liquid interface during solidification were derived from time-lapse videos. The resulting solidification microstructure was determined utilizing scanning electron microscopy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Metalcasting
International Journal of Metalcasting 工程技术-冶金工程
CiteScore
4.20
自引率
42.30%
发文量
174
审稿时长
>12 weeks
期刊介绍: The International Journal of Metalcasting is dedicated to leading the transfer of research and technology for the global metalcasting industry. The quarterly publication keeps the latest developments in metalcasting research and technology in front of the scientific leaders in our global industry throughout the year. All papers published in the the journal are approved after a rigorous peer review process. The editorial peer review board represents three international metalcasting groups: academia (metalcasting professors), science and research (personnel from national labs, research and scientific institutions), and industry (leading technical personnel from metalcasting facilities).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信