四种瓜尔豆基因型在干旱胁迫下抗氧化酶反应的比较分析

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mamtesh Kumari, Rashmi Gangwar, Ramasare Prasad
{"title":"四种瓜尔豆基因型在干旱胁迫下抗氧化酶反应的比较分析","authors":"Mamtesh Kumari, Rashmi Gangwar, Ramasare Prasad","doi":"10.1007/s13562-024-00901-4","DOIUrl":null,"url":null,"abstract":"<p>Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineating the response of antioxidant enzymes comparatively in four guar genotypes under drought stress\",\"authors\":\"Mamtesh Kumari, Rashmi Gangwar, Ramasare Prasad\",\"doi\":\"10.1007/s13562-024-00901-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00901-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00901-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

抗氧化反应在对抗干旱胁迫引起的自由基损伤方面起着至关重要的作用。在瓜尔植物中,抗氧化机制对胁迫耐受性至关重要;然而,各个瓜尔基因型的具体抗氧化反应仍不清楚。本研究通过将土壤含水量(SMC)保持在不同水平(对照(100% FC)、中等(60% FC)和严重(20% FC)),研究了四种瓜尔胶基因型对干旱胁迫的生理、生化和转录反应。与 HG-75 和 RGC-936 相比,HG-563 和 HG-365 的叶片相对含水量(RWC)和总叶绿素/类胡萝卜素含量较高,表明它们在干旱胁迫下受到的抑制较小。值得注意的是,在中等和严重干旱胁迫条件下,HG-563 和 HG-365 的主要抗氧化酶(如超氧化物歧化酶 (SOD)、过氧化物酶 (POD)、抗坏血酸 (AsA) 和谷胱甘肽 (GSH) 的活性显著增加。凝胶内活性测定进一步证实了这一观察结果,该测定揭示了 Cu/ZnSOD 和 POD 同工酶的显著上调,这与 Cu/ZnSOD 和 POD 基因在转录水平上的较高表达水平是一致的。因此,这些结果凸显了 HG-563 和 HG-365 基因型相对较高的耐旱性。这些发现揭示了抗旱瓜尔基因型在胁迫条件下抗氧化反应的激活过程,强调了抗氧化酶在瓜尔植物抗旱机制中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Delineating the response of antioxidant enzymes comparatively in four guar genotypes under drought stress

Delineating the response of antioxidant enzymes comparatively in four guar genotypes under drought stress

Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信