{"title":"四种瓜尔豆基因型在干旱胁迫下抗氧化酶反应的比较分析","authors":"Mamtesh Kumari, Rashmi Gangwar, Ramasare Prasad","doi":"10.1007/s13562-024-00901-4","DOIUrl":null,"url":null,"abstract":"<p>Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delineating the response of antioxidant enzymes comparatively in four guar genotypes under drought stress\",\"authors\":\"Mamtesh Kumari, Rashmi Gangwar, Ramasare Prasad\",\"doi\":\"10.1007/s13562-024-00901-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13562-024-00901-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13562-024-00901-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Delineating the response of antioxidant enzymes comparatively in four guar genotypes under drought stress
Antioxidant responses play a crucial role in combating free radical damage induced by drought stress. In guar plants, the antioxidant mechanism is crucial for stress tolerance; however, the specific antioxidant response in individual guar genotypes remains unclear. This study investigates the physiological, biochemical, and transcriptional responses of four guar genotypes to drought stress by maintaining soil moisture content (SMC) at varying levels: control (100% FC), medium (60% FC), and severe (20% FC). Among the genotypes examined, HG-563 and HG-365 exhibit higher leaf relative water content (RWC) and total chlorophyll/carotenoid content, indicating lesser inhibition under drought stress compared to HG-75 and RGC-936. Notably, HG-563 and HG-365 demonstrate a significant increase in activities of key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate (AsA), and glutathione (GSH) during medium and severe drought stress conditions. This observation is further supported by in-gel activity assays revealing a notable upregulation of Cu/ZnSOD and POD isozymes, which is consistent with higher expression levels of Cu/ZnSOD and POD genes at the transcriptional level. Consequently, these results highlight the comparatively higher drought tolerance of HG-563 and HG-365 genotypes. The findings shed light on the activation of antioxidant responses in drought-tolerant guar genotypes under stress conditions, emphasizing the crucial role of antioxidant enzymes in the drought tolerance mechanism of guar plants.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.