考虑底部电介质隔离方案的多通道叉片场效应晶体管和纳米片场效应晶体管的辐射效应

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Gunhee Choi, Jongwook Jeon
{"title":"考虑底部电介质隔离方案的多通道叉片场效应晶体管和纳米片场效应晶体管的辐射效应","authors":"Gunhee Choi,&nbsp;Jongwook Jeon","doi":"10.1016/j.net.2024.06.031","DOIUrl":null,"url":null,"abstract":"<div><div>This study analyzes the single-event transient (SET) characteristics of alpha particles on multi-channel Forksheet-FET and Nanosheet-FET at the device and circuit levels through 3D TCAD simulations. The study investigates the differences in SET responses based on the energy and incident position of incoming alpha particles, considering the structural variances between Forksheet-FET and Nanosheet-FET, as well as the presence or absence of bottom dielectric isolation (BDI) in the fabrication process. Specifically, the introduction of BDI is observed to significantly suppress the voltage drop caused by ‘unintended' current, as it can block the substantial electron-hole pairs (EHP) generated by injected alpha particles in the bulk substrate from reaching the FET terminals. Furthermore, it was confirmed that the size of abnormal current decreases as the energy of the injected alpha particle increases. Additionally, evaluating the response to SET based on the fundamental logic circuit, the CMOS inverter, revealed relatively small abnormal voltage drops for both Forksheet and Nanosheet when BDI was applied, confirming high immunity to radiation effects. Moreover, it can be observed that the application of BDI enhances reliability from a memory perspective by effectively suppressing voltage flips in the SRAM's cross-coupled latch circuit.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Radiation effects on multi-channel Forksheet-FET and Nanosheet-FET considering the bottom dielectric isolation scheme\",\"authors\":\"Gunhee Choi,&nbsp;Jongwook Jeon\",\"doi\":\"10.1016/j.net.2024.06.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study analyzes the single-event transient (SET) characteristics of alpha particles on multi-channel Forksheet-FET and Nanosheet-FET at the device and circuit levels through 3D TCAD simulations. The study investigates the differences in SET responses based on the energy and incident position of incoming alpha particles, considering the structural variances between Forksheet-FET and Nanosheet-FET, as well as the presence or absence of bottom dielectric isolation (BDI) in the fabrication process. Specifically, the introduction of BDI is observed to significantly suppress the voltage drop caused by ‘unintended' current, as it can block the substantial electron-hole pairs (EHP) generated by injected alpha particles in the bulk substrate from reaching the FET terminals. Furthermore, it was confirmed that the size of abnormal current decreases as the energy of the injected alpha particle increases. Additionally, evaluating the response to SET based on the fundamental logic circuit, the CMOS inverter, revealed relatively small abnormal voltage drops for both Forksheet and Nanosheet when BDI was applied, confirming high immunity to radiation effects. Moreover, it can be observed that the application of BDI enhances reliability from a memory perspective by effectively suppressing voltage flips in the SRAM's cross-coupled latch circuit.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573324002912\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324002912","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过三维 TCAD 仿真,在器件和电路层面分析了α粒子对多通道叉片场效应晶体管和纳米片场效应晶体管的单次瞬态(SET)特性。考虑到 Forksheet-FET 和 Nanosheet-FET 在结构上的差异,以及在制造过程中是否存在底部介质隔离 (BDI),该研究根据入射α粒子的能量和入射位置,研究了 SET 响应的差异。具体来说,引入 BDI 可以显著抑制由 "意外 "电流引起的电压降,因为它可以阻止由注入的α粒子在块状衬底中产生的大量电子-空穴对(EHP)到达 FET 端子。此外,研究还证实,异常电流的大小会随着注入α粒子能量的增加而减小。此外,根据基本逻辑电路(CMOS 逆变器)评估对 SET 的响应时发现,在应用 BDI 时,Forksheet 和 Nanosheet 的异常压降都相对较小,这证实了对辐射影响的高度免疫性。此外,从存储器的角度来看,应用 BDI 可以有效抑制 SRAM 交叉耦合锁存电路中的电压翻转,从而提高可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation effects on multi-channel Forksheet-FET and Nanosheet-FET considering the bottom dielectric isolation scheme
This study analyzes the single-event transient (SET) characteristics of alpha particles on multi-channel Forksheet-FET and Nanosheet-FET at the device and circuit levels through 3D TCAD simulations. The study investigates the differences in SET responses based on the energy and incident position of incoming alpha particles, considering the structural variances between Forksheet-FET and Nanosheet-FET, as well as the presence or absence of bottom dielectric isolation (BDI) in the fabrication process. Specifically, the introduction of BDI is observed to significantly suppress the voltage drop caused by ‘unintended' current, as it can block the substantial electron-hole pairs (EHP) generated by injected alpha particles in the bulk substrate from reaching the FET terminals. Furthermore, it was confirmed that the size of abnormal current decreases as the energy of the injected alpha particle increases. Additionally, evaluating the response to SET based on the fundamental logic circuit, the CMOS inverter, revealed relatively small abnormal voltage drops for both Forksheet and Nanosheet when BDI was applied, confirming high immunity to radiation effects. Moreover, it can be observed that the application of BDI enhances reliability from a memory perspective by effectively suppressing voltage flips in the SRAM's cross-coupled latch circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信