Mauricio Exequiel Cazado , Victor Hugo Sánchez-Espinoza , Alejandro Soba
{"title":"评估核燃料性能模拟中 DIONISIO-SubChanFlow 代码耦合的影响","authors":"Mauricio Exequiel Cazado , Victor Hugo Sánchez-Espinoza , Alejandro Soba","doi":"10.1016/j.net.2024.06.048","DOIUrl":null,"url":null,"abstract":"<div><div>Realistic simulation of nuclear fuel performance requires not only validated models capable of describing the thermomechanical phenomena that take place within the fuel under irradiation conditions, but a detailed description of the thermal hydraulics of the channel surrounding the fuel rods, which provides the boundary conditions of the system. In this work, the main results and outlooks of coupling the thermal hydraulics code SubChanFlow with the fuel performance code DIONISIO are presented. To achieve this, an internal coupling was implemented, wherein DIONISIO is used as a master code controlling SubChanFlow as a thermal hydraulics subroutine replacing the simplified version already embedded in DIONISIO. Several tests were conducted to ensure the performance and quality of the coupling under normal operation conditions as a first approach. In addition, it was observed that the coupling demonstrated a significant improvement in the description of the cladding temperature and related variables, such as oxide thickness and hydrogen uptake, when compared with experimental data.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the impact of DIONISIO-SubChanFlow code coupling in nuclear fuel performance simulations\",\"authors\":\"Mauricio Exequiel Cazado , Victor Hugo Sánchez-Espinoza , Alejandro Soba\",\"doi\":\"10.1016/j.net.2024.06.048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Realistic simulation of nuclear fuel performance requires not only validated models capable of describing the thermomechanical phenomena that take place within the fuel under irradiation conditions, but a detailed description of the thermal hydraulics of the channel surrounding the fuel rods, which provides the boundary conditions of the system. In this work, the main results and outlooks of coupling the thermal hydraulics code SubChanFlow with the fuel performance code DIONISIO are presented. To achieve this, an internal coupling was implemented, wherein DIONISIO is used as a master code controlling SubChanFlow as a thermal hydraulics subroutine replacing the simplified version already embedded in DIONISIO. Several tests were conducted to ensure the performance and quality of the coupling under normal operation conditions as a first approach. In addition, it was observed that the coupling demonstrated a significant improvement in the description of the cladding temperature and related variables, such as oxide thickness and hydrogen uptake, when compared with experimental data.</div></div>\",\"PeriodicalId\":19272,\"journal\":{\"name\":\"Nuclear Engineering and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1738573324003085\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573324003085","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Assessing the impact of DIONISIO-SubChanFlow code coupling in nuclear fuel performance simulations
Realistic simulation of nuclear fuel performance requires not only validated models capable of describing the thermomechanical phenomena that take place within the fuel under irradiation conditions, but a detailed description of the thermal hydraulics of the channel surrounding the fuel rods, which provides the boundary conditions of the system. In this work, the main results and outlooks of coupling the thermal hydraulics code SubChanFlow with the fuel performance code DIONISIO are presented. To achieve this, an internal coupling was implemented, wherein DIONISIO is used as a master code controlling SubChanFlow as a thermal hydraulics subroutine replacing the simplified version already embedded in DIONISIO. Several tests were conducted to ensure the performance and quality of the coupling under normal operation conditions as a first approach. In addition, it was observed that the coupling demonstrated a significant improvement in the description of the cladding temperature and related variables, such as oxide thickness and hydrogen uptake, when compared with experimental data.
期刊介绍:
Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters.
NET covers all fields for peaceful utilization of nuclear energy and radiation as follows:
1) Reactor Physics
2) Thermal Hydraulics
3) Nuclear Safety
4) Nuclear I&C
5) Nuclear Physics, Fusion, and Laser Technology
6) Nuclear Fuel Cycle and Radioactive Waste Management
7) Nuclear Fuel and Reactor Materials
8) Radiation Application
9) Radiation Protection
10) Nuclear Structural Analysis and Plant Management & Maintenance
11) Nuclear Policy, Economics, and Human Resource Development