Leonora Kaldaras, Karen D. Wang, Jocelyn E. Nardo, Argenta Price, Katherine Perkins, Carl Wieman, Shima Salehi
{"title":"采用技术强化反馈和支架,支持利用计算机模拟培养对科学的深刻理解","authors":"Leonora Kaldaras, Karen D. Wang, Jocelyn E. Nardo, Argenta Price, Katherine Perkins, Carl Wieman, Shima Salehi","doi":"10.1186/s40594-024-00490-7","DOIUrl":null,"url":null,"abstract":"Constructivist learning theories consider deep understanding of the content to be the result of engagement in relevant learning activities with appropriate scaffolding that provides the learner with timely and substantive feedback. However, any group of students has a variety of levels of knowledge and cognitive development, which makes providing appropriate individual-level scaffolding and feedback challenging in the classroom. Computer simulations can help meet this challenge by providing technology-enhanced embedded scaffolding and feedback via specific simulation design. The use of computer simulations does not, however, guarantee development of deep science understanding. Careful research-driven design of the simulation and the accompanying teaching structure both play critical roles in achieving the desired learning outcomes. In this paper, we discuss the capabilities of computer simulations and the issues that can impact the learning outcomes when combining technology-enhanced scaffolding and feedback with external teaching structures. We conclude with suggestions of promising research avenues on simulation design and their use in the classroom to help students achieve deep science understanding.","PeriodicalId":48581,"journal":{"name":"International Journal of Stem Education","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Employing technology-enhanced feedback and scaffolding to support the development of deep science understanding using computer simulations\",\"authors\":\"Leonora Kaldaras, Karen D. Wang, Jocelyn E. Nardo, Argenta Price, Katherine Perkins, Carl Wieman, Shima Salehi\",\"doi\":\"10.1186/s40594-024-00490-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructivist learning theories consider deep understanding of the content to be the result of engagement in relevant learning activities with appropriate scaffolding that provides the learner with timely and substantive feedback. However, any group of students has a variety of levels of knowledge and cognitive development, which makes providing appropriate individual-level scaffolding and feedback challenging in the classroom. Computer simulations can help meet this challenge by providing technology-enhanced embedded scaffolding and feedback via specific simulation design. The use of computer simulations does not, however, guarantee development of deep science understanding. Careful research-driven design of the simulation and the accompanying teaching structure both play critical roles in achieving the desired learning outcomes. In this paper, we discuss the capabilities of computer simulations and the issues that can impact the learning outcomes when combining technology-enhanced scaffolding and feedback with external teaching structures. We conclude with suggestions of promising research avenues on simulation design and their use in the classroom to help students achieve deep science understanding.\",\"PeriodicalId\":48581,\"journal\":{\"name\":\"International Journal of Stem Education\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Stem Education\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1186/s40594-024-00490-7\",\"RegionNum\":1,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Stem Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1186/s40594-024-00490-7","RegionNum":1,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Employing technology-enhanced feedback and scaffolding to support the development of deep science understanding using computer simulations
Constructivist learning theories consider deep understanding of the content to be the result of engagement in relevant learning activities with appropriate scaffolding that provides the learner with timely and substantive feedback. However, any group of students has a variety of levels of knowledge and cognitive development, which makes providing appropriate individual-level scaffolding and feedback challenging in the classroom. Computer simulations can help meet this challenge by providing technology-enhanced embedded scaffolding and feedback via specific simulation design. The use of computer simulations does not, however, guarantee development of deep science understanding. Careful research-driven design of the simulation and the accompanying teaching structure both play critical roles in achieving the desired learning outcomes. In this paper, we discuss the capabilities of computer simulations and the issues that can impact the learning outcomes when combining technology-enhanced scaffolding and feedback with external teaching structures. We conclude with suggestions of promising research avenues on simulation design and their use in the classroom to help students achieve deep science understanding.
期刊介绍:
The International Journal of STEM Education is a multidisciplinary journal in subject-content education that focuses on the study of teaching and learning in science, technology, engineering, and mathematics (STEM). It is being established as a brand new, forward looking journal in the field of education. As a peer-reviewed journal, it is positioned to promote research and educational development in the rapidly evolving field of STEM education around the world.