有限编码持久性模块类别的无边际性注释

Lukas Waas
{"title":"有限编码持久性模块类别的无边际性注释","authors":"Lukas Waas","doi":"arxiv-2407.08666","DOIUrl":null,"url":null,"abstract":"When working with (multi-parameter) persistence modules, one usually makes\nsome type of tameness assumption in order to obtain better control over their\nalgebraic behavior. One such notion is Ezra Millers notion of finite\nencodability, which roughly states that a persistence module can be obtained by\npulling back a finite dimensional persistence module over a finite poset. From\nthe perspective of homological algebra, finitely encodable persistence have an\ninconvenient property: They do not form an abelian category. Here, we prove\nthat if one restricts to such persistence modules which can be constructed in\nterms of topologically closed and sufficiently constructible (piecewise linear,\nsemi-algebraic, etc.) upsets then abelianity can be restored.","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Notes on abelianity of categories of finitely encoded persistence modules\",\"authors\":\"Lukas Waas\",\"doi\":\"arxiv-2407.08666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When working with (multi-parameter) persistence modules, one usually makes\\nsome type of tameness assumption in order to obtain better control over their\\nalgebraic behavior. One such notion is Ezra Millers notion of finite\\nencodability, which roughly states that a persistence module can be obtained by\\npulling back a finite dimensional persistence module over a finite poset. From\\nthe perspective of homological algebra, finitely encodable persistence have an\\ninconvenient property: They do not form an abelian category. Here, we prove\\nthat if one restricts to such persistence modules which can be constructed in\\nterms of topologically closed and sufficiently constructible (piecewise linear,\\nsemi-algebraic, etc.) upsets then abelianity can be restored.\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在处理(多参数)持久性模块时,为了更好地控制它们的代数行为,我们通常会做出某种驯服性假设。其中一个概念是埃兹拉-米勒(Ezra Millers)的有限可编码性概念,它大致是说,一个持久性模块可以通过在一个有限正集上拉回一个有限维持久性模块而得到。从同调代数的角度来看,有限可编码持久性有一个不方便的性质:它们不构成一个无性范畴。在这里,我们证明,如果我们限制在这样的持久性模块中,而这些模块可以在拓扑封闭和充分可构造(片线性、半代数等)的颠倒之间构造,那么阿贝尔性就可以恢复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Notes on abelianity of categories of finitely encoded persistence modules
When working with (multi-parameter) persistence modules, one usually makes some type of tameness assumption in order to obtain better control over their algebraic behavior. One such notion is Ezra Millers notion of finite encodability, which roughly states that a persistence module can be obtained by pulling back a finite dimensional persistence module over a finite poset. From the perspective of homological algebra, finitely encodable persistence have an inconvenient property: They do not form an abelian category. Here, we prove that if one restricts to such persistence modules which can be constructed in terms of topologically closed and sufficiently constructible (piecewise linear, semi-algebraic, etc.) upsets then abelianity can be restored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信