基于 ANN-PID 的小型农用拖拉机自动制动控制系统

IF 4.2 2区 计算机科学 Q2 ROBOTICS
Nrusingh Charan Pradhan, Pramod Kumar Sahoo, Dilip Kumar Kushwaha, Dattatray G. Bhalekar, Indra Mani, Kishan Kumar, Avesh Kumar Singh, Mohit Kumar, Yash Makwana, Soumya Krishnan V., Aruna T. N.
{"title":"基于 ANN-PID 的小型农用拖拉机自动制动控制系统","authors":"Nrusingh Charan Pradhan,&nbsp;Pramod Kumar Sahoo,&nbsp;Dilip Kumar Kushwaha,&nbsp;Dattatray G. Bhalekar,&nbsp;Indra Mani,&nbsp;Kishan Kumar,&nbsp;Avesh Kumar Singh,&nbsp;Mohit Kumar,&nbsp;Yash Makwana,&nbsp;Soumya Krishnan V.,&nbsp;Aruna T. N.","doi":"10.1002/rob.22393","DOIUrl":null,"url":null,"abstract":"<p>Braking system is a crucial component of tractors as it ensures safe operation and control of the vehicle. The limited space availability in the workspace of a small tractor exposes the operator to undesirable posture and a maximum level of vibration during operation. The primary cause of road accidents, particularly collisions, is attributed to the tractor operator's insufficient capacity to provide the necessary pedal power for engaging the brake pedal. During the process of engaging the brake pedal, the operator adjusts the backrest support to facilitate access to the brake pedal while operating under stressed conditions. In the present study, a linear actuator-assisted automatic braking system was developed for the small tractors. An integrated artificial neural network proportional–integral–derivative (ANN-PID) controller-based algorithm was developed to control the position of the brake pedal based on the input parameters like terrain condition, obstacle distance, and forward speed of the tractor. The tractor was operated at four different speeds (i.e., 10, 15, 20, and 25 km/h) in different terrain conditions (i.e., dry compacted soil, tilled soil, and asphalt road). The performance parameters like sensor digital output (SDO), force applied on the brake pedal (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>F</mi>\n \n <mi>b</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0001\" wiley:location=\"equation/rob22393-math-0001.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), and deceleration were considered as dependent parameters. The SDO was found to good approximation for sensing the position of the brake pedal during braking. The optimized network topology of the developed multilayer perceptron neural network (MLPNN) was 3-6-2 for predicting SDO and deceleration of the tractor with a coefficient of determination (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>R</mi>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0002\" wiley:location=\"equation/rob22393-math-0002.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>) for the training and testing datasets of the SDO and deceleration were obtained as 0.9953 and 0.9854, and 0.9254 and 0.9096, respectively. The Ziegler–Nichols (Z-N method) method was adopted to determine the initial optimal gains of the PID controller and later these coefficients were optimized using response surface methodology. The optimized proportional (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>p</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0003\" wiley:location=\"equation/rob22393-math-0003.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), integral (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>i</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0004\" wiley:location=\"equation/rob22393-math-0004.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>), and derivative (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>d</mi>\n </msub>\n </mrow>\n </mrow>\n <annotation> &lt;math altimg=\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0005\" wiley:location=\"equation/rob22393-math-0005.png\" display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\n </semantics></math>) coefficient values were 4.8, 6.782, and 3.15, respectively. The developed integrated ANN, that is, MLPNN and PID-based algorithm could successfully control the position of the brake pedal during braking. The stopping distance and slip of the tractor during automatic braking increased with an increase in the forward speed for the tractor from 10 to 25 km/h in all the selected terrain conditions.</p>","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"41 8","pages":"2805-2831"},"PeriodicalIF":4.2000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANN-PID based automatic braking control system for small agricultural tractors\",\"authors\":\"Nrusingh Charan Pradhan,&nbsp;Pramod Kumar Sahoo,&nbsp;Dilip Kumar Kushwaha,&nbsp;Dattatray G. Bhalekar,&nbsp;Indra Mani,&nbsp;Kishan Kumar,&nbsp;Avesh Kumar Singh,&nbsp;Mohit Kumar,&nbsp;Yash Makwana,&nbsp;Soumya Krishnan V.,&nbsp;Aruna T. N.\",\"doi\":\"10.1002/rob.22393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Braking system is a crucial component of tractors as it ensures safe operation and control of the vehicle. The limited space availability in the workspace of a small tractor exposes the operator to undesirable posture and a maximum level of vibration during operation. The primary cause of road accidents, particularly collisions, is attributed to the tractor operator's insufficient capacity to provide the necessary pedal power for engaging the brake pedal. During the process of engaging the brake pedal, the operator adjusts the backrest support to facilitate access to the brake pedal while operating under stressed conditions. In the present study, a linear actuator-assisted automatic braking system was developed for the small tractors. An integrated artificial neural network proportional–integral–derivative (ANN-PID) controller-based algorithm was developed to control the position of the brake pedal based on the input parameters like terrain condition, obstacle distance, and forward speed of the tractor. The tractor was operated at four different speeds (i.e., 10, 15, 20, and 25 km/h) in different terrain conditions (i.e., dry compacted soil, tilled soil, and asphalt road). The performance parameters like sensor digital output (SDO), force applied on the brake pedal (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>F</mi>\\n \\n <mi>b</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0001\\\" wiley:location=\\\"equation/rob22393-math-0001.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;F&lt;/mi&gt;&lt;mi&gt;b&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>), and deceleration were considered as dependent parameters. The SDO was found to good approximation for sensing the position of the brake pedal during braking. The optimized network topology of the developed multilayer perceptron neural network (MLPNN) was 3-6-2 for predicting SDO and deceleration of the tractor with a coefficient of determination (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>R</mi>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0002\\\" wiley:location=\\\"equation/rob22393-math-0002.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msup&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>) for the training and testing datasets of the SDO and deceleration were obtained as 0.9953 and 0.9854, and 0.9254 and 0.9096, respectively. The Ziegler–Nichols (Z-N method) method was adopted to determine the initial optimal gains of the PID controller and later these coefficients were optimized using response surface methodology. The optimized proportional (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>p</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0003\\\" wiley:location=\\\"equation/rob22393-math-0003.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;p&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>), integral (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>i</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0004\\\" wiley:location=\\\"equation/rob22393-math-0004.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>), and derivative (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>d</mi>\\n </msub>\\n </mrow>\\n </mrow>\\n <annotation> &lt;math altimg=\\\"urn:x-wiley:15564959:media:rob22393:rob22393-math-0005\\\" wiley:location=\\\"equation/rob22393-math-0005.png\\\" display=\\\"inline\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;mi&gt;d&lt;/mi&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;</annotation>\\n </semantics></math>) coefficient values were 4.8, 6.782, and 3.15, respectively. The developed integrated ANN, that is, MLPNN and PID-based algorithm could successfully control the position of the brake pedal during braking. The stopping distance and slip of the tractor during automatic braking increased with an increase in the forward speed for the tractor from 10 to 25 km/h in all the selected terrain conditions.</p>\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"41 8\",\"pages\":\"2805-2831\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/rob.22393\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/rob.22393","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

制动系统是拖拉机的重要组成部分,因为它能确保车辆的安全操作和控制。由于小型拖拉机的工作空间有限,操作员在操作过程中很难保持良好的姿势和最大程度的振动。道路交通事故,特别是碰撞事故的主要原因是拖拉机驾驶员没有足够的能力提供必要的踩踏制动踏板的力量。在踩下制动踏板的过程中,操作员会调整靠背支撑,以方便在压力条件下踩下制动踏板。本研究为小型拖拉机开发了线性执行器辅助自动制动系统。根据地形条件、障碍物距离和拖拉机前进速度等输入参数,开发了一种基于集成人工神经网络比例-积分-派生(ANN-PID)控制器的算法来控制制动踏板的位置。拖拉机以四种不同的速度(即 10、15、20 和 25 公里/小时)在不同的地形条件(即干燥压实土壤、耕作土壤和沥青路面)下运行。传感器数字输出(SDO)、施加在制动踏板上的力量()和减速度等性能参数被视为从属参数。结果表明,SDO 可以很好地近似感知制动过程中制动踏板的位置。所开发的多层感知器神经网络(MLPNN)的优化网络拓扑结构为 3-6-2,用于预测拖拉机的 SDO 和减速度,SDO 和减速度的训练数据集和测试数据集的决定系数()分别为 0.9953 和 0.9854,以及 0.9254 和 0.9096。采用齐格勒-尼科尔斯法(Z-N 法)确定了 PID 控制器的初始最佳增益,随后使用响应面法对这些系数进行了优化。优化后的比例()、积分()和导数()系数值分别为 4.8、6.782 和 3.15。所开发的集成 ANN(即基于 MLPNN 和 PID 的算法)可成功控制制动时制动踏板的位置。在所有选定的地形条件下,随着拖拉机前进速度从 10 km/h 增加到 25 km/h,拖拉机在自动制动时的制动距离和滑移量都有所增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ANN-PID based automatic braking control system for small agricultural tractors

Braking system is a crucial component of tractors as it ensures safe operation and control of the vehicle. The limited space availability in the workspace of a small tractor exposes the operator to undesirable posture and a maximum level of vibration during operation. The primary cause of road accidents, particularly collisions, is attributed to the tractor operator's insufficient capacity to provide the necessary pedal power for engaging the brake pedal. During the process of engaging the brake pedal, the operator adjusts the backrest support to facilitate access to the brake pedal while operating under stressed conditions. In the present study, a linear actuator-assisted automatic braking system was developed for the small tractors. An integrated artificial neural network proportional–integral–derivative (ANN-PID) controller-based algorithm was developed to control the position of the brake pedal based on the input parameters like terrain condition, obstacle distance, and forward speed of the tractor. The tractor was operated at four different speeds (i.e., 10, 15, 20, and 25 km/h) in different terrain conditions (i.e., dry compacted soil, tilled soil, and asphalt road). The performance parameters like sensor digital output (SDO), force applied on the brake pedal ( F b <math altimg="urn:x-wiley:15564959:media:rob22393:rob22393-math-0001" wiley:location="equation/rob22393-math-0001.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>F</mi><mi>b</mi></msub></mrow></mrow></math> ), and deceleration were considered as dependent parameters. The SDO was found to good approximation for sensing the position of the brake pedal during braking. The optimized network topology of the developed multilayer perceptron neural network (MLPNN) was 3-6-2 for predicting SDO and deceleration of the tractor with a coefficient of determination ( R 2 <math altimg="urn:x-wiley:15564959:media:rob22393:rob22393-math-0002" wiley:location="equation/rob22393-math-0002.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></mrow></math> ) for the training and testing datasets of the SDO and deceleration were obtained as 0.9953 and 0.9854, and 0.9254 and 0.9096, respectively. The Ziegler–Nichols (Z-N method) method was adopted to determine the initial optimal gains of the PID controller and later these coefficients were optimized using response surface methodology. The optimized proportional ( K p <math altimg="urn:x-wiley:15564959:media:rob22393:rob22393-math-0003" wiley:location="equation/rob22393-math-0003.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mi>p</mi></msub></mrow></mrow></math> ), integral ( K i <math altimg="urn:x-wiley:15564959:media:rob22393:rob22393-math-0004" wiley:location="equation/rob22393-math-0004.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mi>i</mi></msub></mrow></mrow></math> ), and derivative ( K d <math altimg="urn:x-wiley:15564959:media:rob22393:rob22393-math-0005" wiley:location="equation/rob22393-math-0005.png" display="inline" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><msub><mi>K</mi><mi>d</mi></msub></mrow></mrow></math> ) coefficient values were 4.8, 6.782, and 3.15, respectively. The developed integrated ANN, that is, MLPNN and PID-based algorithm could successfully control the position of the brake pedal during braking. The stopping distance and slip of the tractor during automatic braking increased with an increase in the forward speed for the tractor from 10 to 25 km/h in all the selected terrain conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Field Robotics
Journal of Field Robotics 工程技术-机器人学
CiteScore
15.00
自引率
3.60%
发文量
80
审稿时长
6 months
期刊介绍: The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments. The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信