实现双通道独立最大功率传输的双频三维无线功率传输系统

IF 1.8 3区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Hanbing Dan, Yuqian Chao, Zixi Liu, Xueqing Liu, Qi Zhu, Mei Su
{"title":"实现双通道独立最大功率传输的双频三维无线功率传输系统","authors":"Hanbing Dan, Yuqian Chao, Zixi Liu, Xueqing Liu, Qi Zhu, Mei Su","doi":"10.1002/cta.4172","DOIUrl":null,"url":null,"abstract":"This paper proposes a dual‐frequency three‐dimensional wireless power transfer system, which can achieve dual channel independent maximum power transfer of two movable receivers. Based on the dual‐frequency compensation network, a dual‐frequency magnetic field orientation strategy and a current control strategy are developed. Accordingly, the mathematical model of the proposed system is established, providing the theoretical support for mutual non‐interference of the power transfer between the two power transfer channels with different frequencies. On this basis, an iterative optimization control system is designed for independent maximum power transfer for two power transfer channels without any interference. A 200‐W experimental prototype with an efficiency of around 80% is built to verify the correctness of the proposed system. In the case of load position change, the response time of the proposed system is around 200 ms.","PeriodicalId":13874,"journal":{"name":"International Journal of Circuit Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual‐frequency three‐dimensional wireless power transfer system to achieve two‐channel independent maximum power transfer\",\"authors\":\"Hanbing Dan, Yuqian Chao, Zixi Liu, Xueqing Liu, Qi Zhu, Mei Su\",\"doi\":\"10.1002/cta.4172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a dual‐frequency three‐dimensional wireless power transfer system, which can achieve dual channel independent maximum power transfer of two movable receivers. Based on the dual‐frequency compensation network, a dual‐frequency magnetic field orientation strategy and a current control strategy are developed. Accordingly, the mathematical model of the proposed system is established, providing the theoretical support for mutual non‐interference of the power transfer between the two power transfer channels with different frequencies. On this basis, an iterative optimization control system is designed for independent maximum power transfer for two power transfer channels without any interference. A 200‐W experimental prototype with an efficiency of around 80% is built to verify the correctness of the proposed system. In the case of load position change, the response time of the proposed system is around 200 ms.\",\"PeriodicalId\":13874,\"journal\":{\"name\":\"International Journal of Circuit Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Circuit Theory and Applications\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/cta.4172\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuit Theory and Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/cta.4172","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种双频三维无线功率传输系统,可实现两个可移动接收器的双通道独立最大功率传输。在双频补偿网络的基础上,提出了双频磁场定向策略和电流控制策略。据此,建立了所提系统的数学模型,为两个不同频率的功率传输通道之间的功率传输互不干扰提供了理论支持。在此基础上,设计了一个迭代优化控制系统,以实现两个功率传输通道互不干扰的独立最大功率传输。为了验证所提系统的正确性,我们制作了一个 200 瓦的实验原型,其效率约为 80%。在负载位置变化的情况下,所提系统的响应时间约为 200 毫秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual‐frequency three‐dimensional wireless power transfer system to achieve two‐channel independent maximum power transfer
This paper proposes a dual‐frequency three‐dimensional wireless power transfer system, which can achieve dual channel independent maximum power transfer of two movable receivers. Based on the dual‐frequency compensation network, a dual‐frequency magnetic field orientation strategy and a current control strategy are developed. Accordingly, the mathematical model of the proposed system is established, providing the theoretical support for mutual non‐interference of the power transfer between the two power transfer channels with different frequencies. On this basis, an iterative optimization control system is designed for independent maximum power transfer for two power transfer channels without any interference. A 200‐W experimental prototype with an efficiency of around 80% is built to verify the correctness of the proposed system. In the case of load position change, the response time of the proposed system is around 200 ms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Circuit Theory and Applications
International Journal of Circuit Theory and Applications 工程技术-工程:电子与电气
CiteScore
3.60
自引率
34.80%
发文量
277
审稿时长
4.5 months
期刊介绍: The scope of the Journal comprises all aspects of the theory and design of analog and digital circuits together with the application of the ideas and techniques of circuit theory in other fields of science and engineering. Examples of the areas covered include: Fundamental Circuit Theory together with its mathematical and computational aspects; Circuit modeling of devices; Synthesis and design of filters and active circuits; Neural networks; Nonlinear and chaotic circuits; Signal processing and VLSI; Distributed, switched and digital circuits; Power electronics; Solid state devices. Contributions to CAD and simulation are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信