Samira Es-sahly, Abdelaziz Elbasbas, Khalid Naji, Brahim Lakssir, Hakim Faqir, Slimane Dadi, Reda Rabie
{"title":"利用近红外光谱和机器学习模型对沉积岩中的铜矿进行预浓缩","authors":"Samira Es-sahly, Abdelaziz Elbasbas, Khalid Naji, Brahim Lakssir, Hakim Faqir, Slimane Dadi, Reda Rabie","doi":"10.1007/s42461-024-01013-2","DOIUrl":null,"url":null,"abstract":"<p>The western part of the Moroccan Anti-Atlas comprises numerous copper occurrences hosted within various sedimentary rocks, all containing low-grade copper concentrations. This study aims to assess the feasibility of using a near-infrared (NIR) sorting system to efficiently process these low-grade resources. In essence, it involves evaluating the potential of short-wave infrared (SWIR) spectroscopy and machine learning models to classify ore fragments into waste or concentrate based on their SWIR spectral characteristics. In order to conduct this study, the SWIR reflectance of 475 rock samples from the Tizert deposit was measured. Mineralogical analysis was performed, using X-ray diffraction and scanning electron microscopy, to understand the mineralogy of the samples and its relationship to SWIR spectra. Chemical analysis was also performed to categorize samples based on their copper content. Several machine learning models, including partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machine (SVM) were evaluated based on both lithology and copper content characteristics. Among these, PLS-DA yielded the most favorable results, achieving an 84% accuracy in lithologies classification and 90% accuracy in classifying samples based on their copper content, utilizing a 0.2% cutoff grade. This laboratory-scale study validates the effectiveness of SWIR spectroscopy as a prominent tool for pre-concentrating sedimentary copper deposits. It enables the production of a concentrate with a copper content of 1.49% and waste with 0.12%, resulting in an upgrading rate of 43% from the feed, which originally has a copper grade of 1.04%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NIR-Spectroscopy and Machine Learning Models to Pre-concentrate Copper Hosted Within Sedimentary Rocks\",\"authors\":\"Samira Es-sahly, Abdelaziz Elbasbas, Khalid Naji, Brahim Lakssir, Hakim Faqir, Slimane Dadi, Reda Rabie\",\"doi\":\"10.1007/s42461-024-01013-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The western part of the Moroccan Anti-Atlas comprises numerous copper occurrences hosted within various sedimentary rocks, all containing low-grade copper concentrations. This study aims to assess the feasibility of using a near-infrared (NIR) sorting system to efficiently process these low-grade resources. In essence, it involves evaluating the potential of short-wave infrared (SWIR) spectroscopy and machine learning models to classify ore fragments into waste or concentrate based on their SWIR spectral characteristics. In order to conduct this study, the SWIR reflectance of 475 rock samples from the Tizert deposit was measured. Mineralogical analysis was performed, using X-ray diffraction and scanning electron microscopy, to understand the mineralogy of the samples and its relationship to SWIR spectra. Chemical analysis was also performed to categorize samples based on their copper content. Several machine learning models, including partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machine (SVM) were evaluated based on both lithology and copper content characteristics. Among these, PLS-DA yielded the most favorable results, achieving an 84% accuracy in lithologies classification and 90% accuracy in classifying samples based on their copper content, utilizing a 0.2% cutoff grade. This laboratory-scale study validates the effectiveness of SWIR spectroscopy as a prominent tool for pre-concentrating sedimentary copper deposits. It enables the production of a concentrate with a copper content of 1.49% and waste with 0.12%, resulting in an upgrading rate of 43% from the feed, which originally has a copper grade of 1.04%.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s42461-024-01013-2\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s42461-024-01013-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
NIR-Spectroscopy and Machine Learning Models to Pre-concentrate Copper Hosted Within Sedimentary Rocks
The western part of the Moroccan Anti-Atlas comprises numerous copper occurrences hosted within various sedimentary rocks, all containing low-grade copper concentrations. This study aims to assess the feasibility of using a near-infrared (NIR) sorting system to efficiently process these low-grade resources. In essence, it involves evaluating the potential of short-wave infrared (SWIR) spectroscopy and machine learning models to classify ore fragments into waste or concentrate based on their SWIR spectral characteristics. In order to conduct this study, the SWIR reflectance of 475 rock samples from the Tizert deposit was measured. Mineralogical analysis was performed, using X-ray diffraction and scanning electron microscopy, to understand the mineralogy of the samples and its relationship to SWIR spectra. Chemical analysis was also performed to categorize samples based on their copper content. Several machine learning models, including partial least squares discriminant analysis (PLS-DA), random forest (RF), and support vector machine (SVM) were evaluated based on both lithology and copper content characteristics. Among these, PLS-DA yielded the most favorable results, achieving an 84% accuracy in lithologies classification and 90% accuracy in classifying samples based on their copper content, utilizing a 0.2% cutoff grade. This laboratory-scale study validates the effectiveness of SWIR spectroscopy as a prominent tool for pre-concentrating sedimentary copper deposits. It enables the production of a concentrate with a copper content of 1.49% and waste with 0.12%, resulting in an upgrading rate of 43% from the feed, which originally has a copper grade of 1.04%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.