D. K. Markushev, N. Branković, S. M. Aleksić, D. S. Pantić, S. P. Galović, D. D. Markushev, J. Ordonez-Miranda
{"title":"通过电声类比解释作为热载体的过剩自由载流子对 n 型硅热弹性光声响应的影响","authors":"D. K. Markushev, N. Branković, S. M. Aleksić, D. S. Pantić, S. P. Galović, D. D. Markushev, J. Ordonez-Miranda","doi":"10.1007/s10765-024-03406-3","DOIUrl":null,"url":null,"abstract":"<div><p>The explanation of the <i>n</i>-type silicon thermoelastic photoacoustic response is given by electro-acoustic analogies, which clarify the influence of excess free carriers as heat carriers. It was found that electro-acoustic analogies could interconnect different theoretical models of heat flow and carrier dynamics aiming to find the optimal experimental conditions for the efficient free carrier influence analysis of the sample thermoelastic photoacoustic response. Theoretical analysis was based on the comparison between the composite piston, surface recombination, and <i>RC</i> filter frequency response models, extrapolating the behavior of the photoacoustic response much beyond the experimental frequency domain. Experimental analysis was based on the open-cell photoacoustic setup operating under the transmission configuration within the modulation frequencies range from 20 Hz to 20 kHz. The accuracy of our predictions and the validity of electro-acoustic analogies are confirmed by measuring 875 μm plasma-thick and 35 μm plasma-thin silicon samples.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 8","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Influence of Excess Free Carriers as Heat Carriers on the n-Type Silicon Thermoelastic Photoacoustic Responses Explained by Electro-Acoustic Analogies\",\"authors\":\"D. K. Markushev, N. Branković, S. M. Aleksić, D. S. Pantić, S. P. Galović, D. D. Markushev, J. Ordonez-Miranda\",\"doi\":\"10.1007/s10765-024-03406-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The explanation of the <i>n</i>-type silicon thermoelastic photoacoustic response is given by electro-acoustic analogies, which clarify the influence of excess free carriers as heat carriers. It was found that electro-acoustic analogies could interconnect different theoretical models of heat flow and carrier dynamics aiming to find the optimal experimental conditions for the efficient free carrier influence analysis of the sample thermoelastic photoacoustic response. Theoretical analysis was based on the comparison between the composite piston, surface recombination, and <i>RC</i> filter frequency response models, extrapolating the behavior of the photoacoustic response much beyond the experimental frequency domain. Experimental analysis was based on the open-cell photoacoustic setup operating under the transmission configuration within the modulation frequencies range from 20 Hz to 20 kHz. The accuracy of our predictions and the validity of electro-acoustic analogies are confirmed by measuring 875 μm plasma-thick and 35 μm plasma-thin silicon samples.</p></div>\",\"PeriodicalId\":598,\"journal\":{\"name\":\"International Journal of Thermophysics\",\"volume\":\"45 8\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10765-024-03406-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03406-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
The Influence of Excess Free Carriers as Heat Carriers on the n-Type Silicon Thermoelastic Photoacoustic Responses Explained by Electro-Acoustic Analogies
The explanation of the n-type silicon thermoelastic photoacoustic response is given by electro-acoustic analogies, which clarify the influence of excess free carriers as heat carriers. It was found that electro-acoustic analogies could interconnect different theoretical models of heat flow and carrier dynamics aiming to find the optimal experimental conditions for the efficient free carrier influence analysis of the sample thermoelastic photoacoustic response. Theoretical analysis was based on the comparison between the composite piston, surface recombination, and RC filter frequency response models, extrapolating the behavior of the photoacoustic response much beyond the experimental frequency domain. Experimental analysis was based on the open-cell photoacoustic setup operating under the transmission configuration within the modulation frequencies range from 20 Hz to 20 kHz. The accuracy of our predictions and the validity of electro-acoustic analogies are confirmed by measuring 875 μm plasma-thick and 35 μm plasma-thin silicon samples.
期刊介绍:
International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.