关于有极性分解的度量空间上的分数不等式

IF 1 3区 数学 Q1 MATHEMATICS
Aidyn Kassymov, Michael Ruzhansky, Gulnur Zaur
{"title":"关于有极性分解的度量空间上的分数不等式","authors":"Aidyn Kassymov, Michael Ruzhansky, Gulnur Zaur","doi":"10.1515/forum-2024-0056","DOIUrl":null,"url":null,"abstract":"In this paper, we prove the fractional Hardy inequality on polarisable metric measure spaces. The integral Hardy inequality for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_forum-2024-0056_ineq_0001.png\"/> <jats:tex-math>1&lt;p\\leq q&lt;\\infty</jats:tex-math> </jats:alternatives> </jats:inline-formula> is playing a key role in the proof. Moreover, we also prove the fractional Hardy–Sobolev type inequality on metric measure spaces. In addition, logarithmic Hardy–Sobolev and fractional Nash type inequalities on metric measure spaces are presented. In addition, we present applications on homogeneous groups and on the Heisenberg group.","PeriodicalId":12433,"journal":{"name":"Forum Mathematicum","volume":"23 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On fractional inequalities on metric measure spaces with polar decomposition\",\"authors\":\"Aidyn Kassymov, Michael Ruzhansky, Gulnur Zaur\",\"doi\":\"10.1515/forum-2024-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we prove the fractional Hardy inequality on polarisable metric measure spaces. The integral Hardy inequality for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>≤</m:mo> <m:mi>q</m:mi> <m:mo>&lt;</m:mo> <m:mi mathvariant=\\\"normal\\\">∞</m:mi> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_forum-2024-0056_ineq_0001.png\\\"/> <jats:tex-math>1&lt;p\\\\leq q&lt;\\\\infty</jats:tex-math> </jats:alternatives> </jats:inline-formula> is playing a key role in the proof. Moreover, we also prove the fractional Hardy–Sobolev type inequality on metric measure spaces. In addition, logarithmic Hardy–Sobolev and fractional Nash type inequalities on metric measure spaces are presented. In addition, we present applications on homogeneous groups and on the Heisenberg group.\",\"PeriodicalId\":12433,\"journal\":{\"name\":\"Forum Mathematicum\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum Mathematicum\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/forum-2024-0056\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum Mathematicum","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/forum-2024-0056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文证明了可极化度量空间上的分数哈代不等式。1 < p ≤ q < ∞ 1<p\leq q<\infty 的积分哈代不等式在证明中起着关键作用。此外,我们还证明了公度量空间上的分数哈代-索博廖夫型不等式。此外,我们还提出了公度量空间上的对数 Hardy-Sobolev 型不等式和分数纳什型不等式。此外,我们还介绍了在均质群和海森堡群上的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On fractional inequalities on metric measure spaces with polar decomposition
In this paper, we prove the fractional Hardy inequality on polarisable metric measure spaces. The integral Hardy inequality for 1 < p q < 1<p\leq q<\infty is playing a key role in the proof. Moreover, we also prove the fractional Hardy–Sobolev type inequality on metric measure spaces. In addition, logarithmic Hardy–Sobolev and fractional Nash type inequalities on metric measure spaces are presented. In addition, we present applications on homogeneous groups and on the Heisenberg group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum Mathematicum
Forum Mathematicum 数学-数学
CiteScore
1.60
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Forum Mathematicum is a general mathematics journal, which is devoted to the publication of research articles in all fields of pure and applied mathematics, including mathematical physics. Forum Mathematicum belongs to the top 50 journals in pure and applied mathematics, as measured by citation impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信