持久性理论中的振幅

IF 0.7 2区 数学 Q2 MATHEMATICS
Barbara Giunti , John S. Nolan , Nina Otter , Lukas Waas
{"title":"持久性理论中的振幅","authors":"Barbara Giunti ,&nbsp;John S. Nolan ,&nbsp;Nina Otter ,&nbsp;Lukas Waas","doi":"10.1016/j.jpaa.2024.107770","DOIUrl":null,"url":null,"abstract":"<div><p>The use of persistent homology in applications is justified by the validity of certain stability results. At the core of such results is a notion of distance between the invariants that one associates with data sets. Here we introduce a general framework to compare distances and invariants in multiparameter persistence, where there is no natural choice of invariants and distances between them. We define amplitudes, monotone, and subadditive invariants that arise from assigning a non-negative real number to objects of an abelian category. We then present different ways to associate distances to such invariants, and we provide a classification of classes of amplitudes relevant to topological data analysis. In addition, we study the relationships as well as the discriminative power of such amplitude distances arising in topological data analysis scenarios.</p></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022404924001671/pdfft?md5=13447f7bb8eeb6603f17dd7471b6786f&pid=1-s2.0-S0022404924001671-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Amplitudes in persistence theory\",\"authors\":\"Barbara Giunti ,&nbsp;John S. Nolan ,&nbsp;Nina Otter ,&nbsp;Lukas Waas\",\"doi\":\"10.1016/j.jpaa.2024.107770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of persistent homology in applications is justified by the validity of certain stability results. At the core of such results is a notion of distance between the invariants that one associates with data sets. Here we introduce a general framework to compare distances and invariants in multiparameter persistence, where there is no natural choice of invariants and distances between them. We define amplitudes, monotone, and subadditive invariants that arise from assigning a non-negative real number to objects of an abelian category. We then present different ways to associate distances to such invariants, and we provide a classification of classes of amplitudes relevant to topological data analysis. In addition, we study the relationships as well as the discriminative power of such amplitude distances arising in topological data analysis scenarios.</p></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001671/pdfft?md5=13447f7bb8eeb6603f17dd7471b6786f&pid=1-s2.0-S0022404924001671-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924001671\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924001671","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

某些稳定性结果的有效性证明了在应用中使用持久同调的合理性。这些结果的核心是与数据集相关联的不变式之间的距离概念。在这里,我们引入了一个通用框架,用于比较多参数持久性中的距离和不变式,在这种情况下,不变式和它们之间的距离没有自然选择。我们定义了振幅不变式、单调不变式和次正不变式,这些不变式产生于将一个非负实数分配给一个无性范畴的对象。然后,我们介绍了将距离与这些不变式相关联的不同方法,并对与拓扑数据分析相关的振幅类别进行了分类。此外,我们还研究了拓扑数据分析中出现的振幅距离的关系和判别能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amplitudes in persistence theory

The use of persistent homology in applications is justified by the validity of certain stability results. At the core of such results is a notion of distance between the invariants that one associates with data sets. Here we introduce a general framework to compare distances and invariants in multiparameter persistence, where there is no natural choice of invariants and distances between them. We define amplitudes, monotone, and subadditive invariants that arise from assigning a non-negative real number to objects of an abelian category. We then present different ways to associate distances to such invariants, and we provide a classification of classes of amplitudes relevant to topological data analysis. In addition, we study the relationships as well as the discriminative power of such amplitude distances arising in topological data analysis scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信