Ossama Abou Ali Modad, Jason Ryska, Abdallah Chehade, Georges Ayoub
{"title":"通过工业 5.0 数字孪生革新钣金冲压:全面回顾","authors":"Ossama Abou Ali Modad, Jason Ryska, Abdallah Chehade, Georges Ayoub","doi":"10.1007/s10845-024-02453-9","DOIUrl":null,"url":null,"abstract":"<p>In this manuscript, we present a comprehensive overview of true digital twin applications within the manufacturing industry, specifically delving into advancements in sheet metal forming. A true digital twin is a virtual representation of a physical process or production system, enabling bidirectional data exchange between the physical and digital domains and facilitating real-time optimization of performance and decision-making through synchronized data from sensors. Hence, we will highlight the difference between Industry 4.0 and the digital twin concept, which is considered synonymous with Industry 5.0. Additionally, we will be outlining the relationship between the true digital twin and Zero Defect Manufacturing. In manufacturing processes, including sheet metal stamping, the advantages of high production speed, cost-effective tooling, and consistent component production are counterbalanced by the challenge of dimensional variability in finished parts, which is influenced by process parameters. Data collection, storage, and analysis are essential for understanding manufactured parts variability, and leveraging true digital twins ensures high-quality parts production and processes optimization.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"55 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing sheet metal stamping through industry 5.0 digital twins: a comprehensive review\",\"authors\":\"Ossama Abou Ali Modad, Jason Ryska, Abdallah Chehade, Georges Ayoub\",\"doi\":\"10.1007/s10845-024-02453-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this manuscript, we present a comprehensive overview of true digital twin applications within the manufacturing industry, specifically delving into advancements in sheet metal forming. A true digital twin is a virtual representation of a physical process or production system, enabling bidirectional data exchange between the physical and digital domains and facilitating real-time optimization of performance and decision-making through synchronized data from sensors. Hence, we will highlight the difference between Industry 4.0 and the digital twin concept, which is considered synonymous with Industry 5.0. Additionally, we will be outlining the relationship between the true digital twin and Zero Defect Manufacturing. In manufacturing processes, including sheet metal stamping, the advantages of high production speed, cost-effective tooling, and consistent component production are counterbalanced by the challenge of dimensional variability in finished parts, which is influenced by process parameters. Data collection, storage, and analysis are essential for understanding manufactured parts variability, and leveraging true digital twins ensures high-quality parts production and processes optimization.</p>\",\"PeriodicalId\":16193,\"journal\":{\"name\":\"Journal of Intelligent Manufacturing\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10845-024-02453-9\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02453-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Revolutionizing sheet metal stamping through industry 5.0 digital twins: a comprehensive review
In this manuscript, we present a comprehensive overview of true digital twin applications within the manufacturing industry, specifically delving into advancements in sheet metal forming. A true digital twin is a virtual representation of a physical process or production system, enabling bidirectional data exchange between the physical and digital domains and facilitating real-time optimization of performance and decision-making through synchronized data from sensors. Hence, we will highlight the difference between Industry 4.0 and the digital twin concept, which is considered synonymous with Industry 5.0. Additionally, we will be outlining the relationship between the true digital twin and Zero Defect Manufacturing. In manufacturing processes, including sheet metal stamping, the advantages of high production speed, cost-effective tooling, and consistent component production are counterbalanced by the challenge of dimensional variability in finished parts, which is influenced by process parameters. Data collection, storage, and analysis are essential for understanding manufactured parts variability, and leveraging true digital twins ensures high-quality parts production and processes optimization.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.