Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang, Haojian Huang
{"title":"滑动速度对超高分子量聚乙烯基复合材料摩擦和磨损行为的显著影响","authors":"Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang, Haojian Huang","doi":"10.1108/ilt-03-2024-0069","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with low friction and wear to meet the needs of solid material transportation. This paper aims to prepare high-performance ultrahigh molecular weight polyethylene (UHMWPE) matrix composites and investigate the effect of service condition on frictional behavior for composite.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>In this study, UHMWPE matrix composites with different content of MoS<sub>2</sub> were prepared and the tribological performance of the GCr15/composites friction pair in various sliding speeds (0.025–0.125 m/s) under dry friction conditions were studied by ball-on-disk tribology experiments.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>Results show that the frictional behavior was shown to be sensitive to MoS2 concentration and sliding velocity. As the MoS2 content is 2 Wt.%, composites presented the best overall tribological performance. Besides, the friction coefficient fluctuates around 0.21 from 0.025 to 0.125 m/s sliding speed, while the wear rate increases gradually. Scanning electron microscopy images, energy-dispersive spectroscopy and Raman Spectrum analysis present that the main wear mechanisms were abrasive and fatigue wear.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The knowledge obtained herein will facilitate the design of UHMWPE matrix composites with promising self-lubrication performances which used in slag transport engineering field.</p><!--/ Abstract__block -->","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Significant sliding speed effect on the friction and wear behavior of UHMWPE matrix composites\",\"authors\":\"Jinming Zhen, Congcong Zhen, Min Yuan, Yingliang Liu, Li Wang, Lin Yuan, Yuhan Sun, Xinyue Zhang, Xiaoshu Yang, Haojian Huang\",\"doi\":\"10.1108/ilt-03-2024-0069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with low friction and wear to meet the needs of solid material transportation. This paper aims to prepare high-performance ultrahigh molecular weight polyethylene (UHMWPE) matrix composites and investigate the effect of service condition on frictional behavior for composite.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>In this study, UHMWPE matrix composites with different content of MoS<sub>2</sub> were prepared and the tribological performance of the GCr15/composites friction pair in various sliding speeds (0.025–0.125 m/s) under dry friction conditions were studied by ball-on-disk tribology experiments.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>Results show that the frictional behavior was shown to be sensitive to MoS2 concentration and sliding velocity. As the MoS2 content is 2 Wt.%, composites presented the best overall tribological performance. Besides, the friction coefficient fluctuates around 0.21 from 0.025 to 0.125 m/s sliding speed, while the wear rate increases gradually. Scanning electron microscopy images, energy-dispersive spectroscopy and Raman Spectrum analysis present that the main wear mechanisms were abrasive and fatigue wear.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The knowledge obtained herein will facilitate the design of UHMWPE matrix composites with promising self-lubrication performances which used in slag transport engineering field.</p><!--/ Abstract__block -->\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/ilt-03-2024-0069\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/ilt-03-2024-0069","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Significant sliding speed effect on the friction and wear behavior of UHMWPE matrix composites
Purpose
With the rapid development of the pipeline transportation and exploitation of mineral resources, it is urgent requirement for the high-performance polymer matrix composites with low friction and wear to meet the needs of solid material transportation. This paper aims to prepare high-performance ultrahigh molecular weight polyethylene (UHMWPE) matrix composites and investigate the effect of service condition on frictional behavior for composite.
Design/methodology/approach
In this study, UHMWPE matrix composites with different content of MoS2 were prepared and the tribological performance of the GCr15/composites friction pair in various sliding speeds (0.025–0.125 m/s) under dry friction conditions were studied by ball-on-disk tribology experiments.
Findings
Results show that the frictional behavior was shown to be sensitive to MoS2 concentration and sliding velocity. As the MoS2 content is 2 Wt.%, composites presented the best overall tribological performance. Besides, the friction coefficient fluctuates around 0.21 from 0.025 to 0.125 m/s sliding speed, while the wear rate increases gradually. Scanning electron microscopy images, energy-dispersive spectroscopy and Raman Spectrum analysis present that the main wear mechanisms were abrasive and fatigue wear.
Originality/value
The knowledge obtained herein will facilitate the design of UHMWPE matrix composites with promising self-lubrication performances which used in slag transport engineering field.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.