Rafael da Silva, Lucas Gomes da Silva Catunda, Rafael Martos Buoro
{"title":"乙炔黑基刚性复合电极的多重比较:化学特性和电化学传感潜力的综合评估","authors":"Rafael da Silva, Lucas Gomes da Silva Catunda, Rafael Martos Buoro","doi":"10.1007/s10008-024-06012-3","DOIUrl":null,"url":null,"abstract":"<div><p>We report the comparison of multiple acetylene black (AB) rigid carbon composites for electrochemical purposes exploring several binders, including one (polyurethane) from a renewable source of castor oil. The acetylene black–based composites presented less roughness and increased surface homogeneity evinced by AFM and SEM images within the micrometer range. Contact angle analysis and Raman spectra confirmed a high degree of surface functionalization associated with structural defects on AB even when the base conductive material is associated with a non-conductive binder. The acetylene black-castor oil electrode presented superior performance (lower resistance to charge transfer and increased peak currents) when compared to its graphite counterparts regardless of the mechanical activation. The proposed electrode presented an excellent electrochemical performance in analyzing contaminants of emerging concern when compared to glassy carbon electrodes. The sustainable aspect of this work is evinced considering the room temperature synthesis, low cost of the AB, and renewable castor oil binder source.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 11","pages":"3999 - 4013"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple comparisons of acetylene black–based rigid composite electrodes: comprehensive evaluation of chemical properties and electrochemical sensing potentialities\",\"authors\":\"Rafael da Silva, Lucas Gomes da Silva Catunda, Rafael Martos Buoro\",\"doi\":\"10.1007/s10008-024-06012-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report the comparison of multiple acetylene black (AB) rigid carbon composites for electrochemical purposes exploring several binders, including one (polyurethane) from a renewable source of castor oil. The acetylene black–based composites presented less roughness and increased surface homogeneity evinced by AFM and SEM images within the micrometer range. Contact angle analysis and Raman spectra confirmed a high degree of surface functionalization associated with structural defects on AB even when the base conductive material is associated with a non-conductive binder. The acetylene black-castor oil electrode presented superior performance (lower resistance to charge transfer and increased peak currents) when compared to its graphite counterparts regardless of the mechanical activation. The proposed electrode presented an excellent electrochemical performance in analyzing contaminants of emerging concern when compared to glassy carbon electrodes. The sustainable aspect of this work is evinced considering the room temperature synthesis, low cost of the AB, and renewable castor oil binder source.</p></div>\",\"PeriodicalId\":665,\"journal\":{\"name\":\"Journal of Solid State Electrochemistry\",\"volume\":\"28 11\",\"pages\":\"3999 - 4013\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid State Electrochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10008-024-06012-3\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-06012-3","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Multiple comparisons of acetylene black–based rigid composite electrodes: comprehensive evaluation of chemical properties and electrochemical sensing potentialities
We report the comparison of multiple acetylene black (AB) rigid carbon composites for electrochemical purposes exploring several binders, including one (polyurethane) from a renewable source of castor oil. The acetylene black–based composites presented less roughness and increased surface homogeneity evinced by AFM and SEM images within the micrometer range. Contact angle analysis and Raman spectra confirmed a high degree of surface functionalization associated with structural defects on AB even when the base conductive material is associated with a non-conductive binder. The acetylene black-castor oil electrode presented superior performance (lower resistance to charge transfer and increased peak currents) when compared to its graphite counterparts regardless of the mechanical activation. The proposed electrode presented an excellent electrochemical performance in analyzing contaminants of emerging concern when compared to glassy carbon electrodes. The sustainable aspect of this work is evinced considering the room temperature synthesis, low cost of the AB, and renewable castor oil binder source.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.