Yuvaraj Haldorai, Raju Suresh Kumar, Sivalingam Ramesh, R. T. Rajendra Kumar, Woochul Yang
{"title":"在还原氧化石墨烯纳米复合材料上支撑的溶胶凝胶合成氧化铜纳米粒子在阳光下催化亚甲基蓝降解和纳米流体中的应用","authors":"Yuvaraj Haldorai, Raju Suresh Kumar, Sivalingam Ramesh, R. T. Rajendra Kumar, Woochul Yang","doi":"10.1007/s10971-024-06469-8","DOIUrl":null,"url":null,"abstract":"<div><p>The presence of organic dye contaminations has been a major concern in recent years. Metal oxides and their composite have created a huge interest in the degradation of organic pollutants utilizing particularly direct sunlight has been investigated recently. This study demonstrated a facile sol-gel-assisted synthesis of copper oxide (CuO) nanoparticles (NPs) dispersed on reduced graphene oxide (rGO) composite for solar light-assisted removal of methylene blue (MB) dye and nanofluids applications. Transmission electron microscopic images displayed that the CuO NPs, which had a mean diameter of 30 nm, were dispersed on the rGO surface. The composite photocatalyst demonstrated a 92% degradation rate for MB dye. In addition, the study examined the impact of photocatalyst quantity, concentration of MB, and pH on MB degradation. A study on radical scavenging demonstrated that the generation of superoxide radicals was the main factor responsible for the degradation of MB. The stability test demonstrated that the degradation efficiency of the MB did not exhibit a substantial reduction after four consecutive cycles. Furthermore, the thermal conductivity of CuO/rGO nanofluids depends on the particle concentration and temperature. The thermal conductivity enhancement of the nanofluids with a 0.07% volume fraction at 65 °C in deionized water and ethylene glycol was found to be 47.5% and 30.3%, respectively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"111 3","pages":"689 - 702"},"PeriodicalIF":2.3000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sol-gel synthesized CuO nanoparticles supported on reduced graphene oxide nanocomposite for sunlight-catalytic methylene blue degradation and nanofluid applications\",\"authors\":\"Yuvaraj Haldorai, Raju Suresh Kumar, Sivalingam Ramesh, R. T. Rajendra Kumar, Woochul Yang\",\"doi\":\"10.1007/s10971-024-06469-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The presence of organic dye contaminations has been a major concern in recent years. Metal oxides and their composite have created a huge interest in the degradation of organic pollutants utilizing particularly direct sunlight has been investigated recently. This study demonstrated a facile sol-gel-assisted synthesis of copper oxide (CuO) nanoparticles (NPs) dispersed on reduced graphene oxide (rGO) composite for solar light-assisted removal of methylene blue (MB) dye and nanofluids applications. Transmission electron microscopic images displayed that the CuO NPs, which had a mean diameter of 30 nm, were dispersed on the rGO surface. The composite photocatalyst demonstrated a 92% degradation rate for MB dye. In addition, the study examined the impact of photocatalyst quantity, concentration of MB, and pH on MB degradation. A study on radical scavenging demonstrated that the generation of superoxide radicals was the main factor responsible for the degradation of MB. The stability test demonstrated that the degradation efficiency of the MB did not exhibit a substantial reduction after four consecutive cycles. Furthermore, the thermal conductivity of CuO/rGO nanofluids depends on the particle concentration and temperature. The thermal conductivity enhancement of the nanofluids with a 0.07% volume fraction at 65 °C in deionized water and ethylene glycol was found to be 47.5% and 30.3%, respectively.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"111 3\",\"pages\":\"689 - 702\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06469-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06469-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Sol-gel synthesized CuO nanoparticles supported on reduced graphene oxide nanocomposite for sunlight-catalytic methylene blue degradation and nanofluid applications
The presence of organic dye contaminations has been a major concern in recent years. Metal oxides and their composite have created a huge interest in the degradation of organic pollutants utilizing particularly direct sunlight has been investigated recently. This study demonstrated a facile sol-gel-assisted synthesis of copper oxide (CuO) nanoparticles (NPs) dispersed on reduced graphene oxide (rGO) composite for solar light-assisted removal of methylene blue (MB) dye and nanofluids applications. Transmission electron microscopic images displayed that the CuO NPs, which had a mean diameter of 30 nm, were dispersed on the rGO surface. The composite photocatalyst demonstrated a 92% degradation rate for MB dye. In addition, the study examined the impact of photocatalyst quantity, concentration of MB, and pH on MB degradation. A study on radical scavenging demonstrated that the generation of superoxide radicals was the main factor responsible for the degradation of MB. The stability test demonstrated that the degradation efficiency of the MB did not exhibit a substantial reduction after four consecutive cycles. Furthermore, the thermal conductivity of CuO/rGO nanofluids depends on the particle concentration and temperature. The thermal conductivity enhancement of the nanofluids with a 0.07% volume fraction at 65 °C in deionized water and ethylene glycol was found to be 47.5% and 30.3%, respectively.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.